Combinatorial Interpretations for Rank-Two Cluster Algebras of Affine Type

Fomin and Zelevinsky show that a certain two-parameter family of rational recurrence relations, here called the $(b,c)$ family, possesses the Laurentness property: for all $b,c$, each term of the $(b,c)$ sequence can be expressed as a Laurent polynomial in the two initial terms. In the case where the positive integers $b,c$ satisfy $bc 4$, the recurrence is related to Kac-Moody rank $2$ Lie algebras of general type. Here we investigate the borderline cases $bc=4$, corresponding to Kac-Moody Lie algebras of affine type. In these cases, we show that the Laurent polynomials arising from the recurence can be viewed as generating functions that enumerate the perfect matchings of certain graphs. By providing combinatorial interpretations of the individual coefficients of these Laurent polynomials, we establish their positivity.

[1]  James Gary Propp A Reciprocity Theorem for Domino Tilings , 2001, Electron. J. Comb..

[2]  Cluster algebras as Hall algebras of quiver representations , 2004, math/0410187.

[3]  Arnold Knopfmacher,et al.  GRAPH COMPOSITIONS I: BASIC ENUMERATION , 2000 .

[4]  J. Propp,et al.  Alternating sign matrices and domino tilings , 1991, math/9201305.

[5]  I. Gessel,et al.  Binomial Determinants, Paths, and Hook Length Formulae , 1985 .

[6]  S. Fomin,et al.  Y-systems and generalized associahedra , 2001, hep-th/0111053.

[7]  Andrei Zelevinsky,et al.  Semicanonical Basis Generators of the Cluster Algebra of Type A1(1) , 2006, Electronic Journal of Combinatorics.

[8]  Eric Kuo,et al.  Applications of graphical condensation for enumerating matchings and tilings , 2003, Theor. Comput. Sci..

[9]  Wieslaw Bajguz Graph and Union of Graphs Compositions , 2006, ArXiv.

[10]  T. Kyle Petersen,et al.  A Reciprocity Theorem for Monomer-Dimer Coverings , 2003, DMCS.

[11]  Positivity and canonical bases in rank 2 cluster algebras of finite and affine types , 2003, math/0307082.

[12]  A. Zelevinsky,et al.  Laurent expansions in cluster algebras via quiver representations , 2006, math/0604054.

[13]  S. Fomin,et al.  Cluster algebras II: Finite type classification , 2002, math/0208229.

[14]  S. Fomin,et al.  Cluster algebras I: Foundations , 2001, math/0104151.

[15]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[16]  Sergey Fomin,et al.  The Laurent Phenomenon , 2002, Adv. Appl. Math..

[17]  A. Benjamin,et al.  Proofs that Really Count: The Art of Combinatorial Proof , 2003 .

[18]  H. S. M. Coxeter,et al.  Triangulated polygons and frieze patterns , 1973, The Mathematical Gazette.