On the elimination of inessential points in the smallest enclosing ball problem
暂无分享,去创建一个
[1] Kenneth L. Clarkson,et al. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm , 2008, SODA '08.
[2] Selin Damla Ahipasaoglu,et al. Identification and Elimination of Interior Points for the Minimum Enclosing Ball Problem , 2008, SIAM J. Optim..
[3] D. Titterington. Estimation of Correlation Coefficients by Ellipsoidal Trimming , 1978 .
[4] W. J. Studden,et al. Theory Of Optimal Experiments , 1972 .
[5] L.. A delimitation of the support of optimal designs for Kiefer ’ s φ p-class of criteria , 2013 .
[6] L. Pronzato. Minimax and maximin space-filling designs: some properties and methods for construction , 2017 .
[7] Luc Pronzato,et al. Improvements on removing nonoptimal support points in D-optimum design algorithms , 2007, 0706.4394.
[8] Donald Goldfarb,et al. A numerically stable dual method for solving strictly convex quadratic programs , 1983, Math. Program..
[9] Michael J. Todd,et al. Minimum volume ellipsoids - theory and algorithms , 2016, MOS-SIAM Series on Optimization.
[10] Changbao Wu,et al. Some Algorithmic Aspects of the Theory of Optimal Designs , 1978 .
[11] E. Alper Yildirim,et al. Two Algorithms for the Minimum Enclosing Ball Problem , 2008, SIAM J. Optim..
[12] Bernd Gärtner,et al. Fast and Robust Smallest Enclosing Balls , 1999, ESA.
[13] L. Pronzato. DISCUSSION OF THE PAPER > BY H. P. WYNN , 1993 .
[14] Emo Welzl,et al. Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.
[15] Kenneth L. Clarkson,et al. Optimal core-sets for balls , 2008, Comput. Geom..
[16] C. Atwood. Sequences Converging to $D$-Optimal Designs of Experiments , 1973 .
[17] Peng Sun,et al. Linear convergence of a modified Frank–Wolfe algorithm for computing minimum-volume enclosing ellipsoids , 2008, Optim. Methods Softw..
[18] Anthony C. Atkinson,et al. Optimal Experimental Design , 2015 .
[19] Jesús López-Fidalgo,et al. Design of experiments for nonlinear models , 2011 .
[20] A. Vacavant,et al. Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-Scale/Irregular Geometric Representation and Generalized Linear Programming , 2017 .
[21] Andrej Pázman,et al. Foundations of Optimum Experimental Design , 1986 .
[22] J. Kiefer,et al. The Equivalence of Two Extremum Problems , 1960, Canadian Journal of Mathematics.
[23] Byran J. Smucker,et al. Optimal experimental design , 2018, Nature Methods.
[24] Yaming Yu. Monotonic convergence of a general algorithm for computing optimal designs , 2009, 0905.2646.
[25] D. Hearn,et al. The Minimum Covering Sphere Problem , 1972 .
[26] V. L. Turova-Botkina,et al. An algorithm for finding the Chebyshev center of a convex polyhedron , 1994, System Modelling and Optimization.
[27] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[28] Luc Pronzato,et al. A delimitation of the support of optimal designs for Kiefer’s ϕp-class of criteria , 2013, 1303.5046.
[29] D. Titterington. Optimal design: Some geometrical aspects of D-optimality , 1975 .
[30] L. Pronzato,et al. Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties , 2013 .
[31] S. Silvey,et al. A geometric approach to optimal design theory , 1973 .
[32] Michael J. Todd,et al. On Khachiyan's algorithm for the computation of minimum-volume enclosing ellipsoids , 2007, Discret. Appl. Math..