Wigner–Yanase information on quantum state space: The geometric approach
暂无分享,去创建一个
[1] A. Jenčová. Quantum information geometry and standard purification , 2002 .
[2] R. Bhatia. Matrix Analysis , 1996 .
[3] On the curvature of monotone metrics and a conjecture concerning the Kubo-Mori metric , 1999, quant-ph/9906009.
[4] N. Chentsov,et al. Markov invariant geometry on manifolds of states , 1991 .
[5] P. Gibilisco,et al. Monotone metrics on statistical manifolds of density matrices by geometry of non-commutative L2-spaces , 2001 .
[6] A. Uhlmann. GEOMETRIC PHASES AND RELATED STRUCTURES , 1995 .
[7] M. Grasselli. DUALITY, MONOTONICITY AND THE WIGNER YANASE DYSON METRICS , 2002, math-ph/0212022.
[8] H. Hasegawa. Non-Commutative Extension of the Information Geometry , 1995 .
[9] A. Jenčová. Geometry of quantum states: dual connections and divergence functions , 2001 .
[10] Paolo Gibilisco,et al. A CHARACTERISATION OF WIGNER YANASE SKEW INFORMATION AMONG STATISTICALLY MONOTONE METRICS , 2001 .
[11] H. Hasegawa. DUAL GEOMETRY OF THE WIGNER–YANASE–DYSON INFORMATION CONTENT , 2003 .
[12] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[13] Denes Petz,et al. Covariance and Fisher information in quantum mechanics , 2001, quant-ph/0106125.
[14] D. Petz,et al. Geometries of quantum states , 1996 .
[15] D. Petz. Geometry of canonical correlation on the state space of a quantum system , 1994 .
[16] J. Dittmann. The scalar curvature of the Bures metric on the space of density matrices , 1998, quant-ph/9810012.
[17] S. Braunstein,et al. Geometry of Quantum States , 1995 .
[18] P. Gibilisco,et al. On the characterisation of dual statistically monotone metrics , 2003 .
[19] A. Uhlmann. Density operators as an arena for differential geometry , 1993 .
[20] N. N. Chent︠s︡ov. Statistical decision rules and optimal inference , 1982 .
[21] Giovanni Pistone,et al. Connections on non-parametric statistical manifolds by Orlicz space geometry , 1998 .
[22] Giovanni Pistone,et al. An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .
[23] Osamu Hirota,et al. "Quantum Communication, Computing, and Measurement" , 2012 .
[24] D. Petz. Monotone metrics on matrix spaces , 1996 .
[25] Armin Uhlmann,et al. Parallel transport and “quantum holonomy” along density operators , 1986 .
[26] J. Dittmann. On the Riemannian metric on the space of density matrices , 1995 .
[27] P. Gibilisco,et al. CONNECTIONS ON STATISTICAL MANIFOLDS OF DENSITY OPERATORS BY GEOMETRY OF NONCOMMUTATIVE Lp-SPACES , 1999 .
[28] D. Petz,et al. Non-Commutative Extension of Information Geometry II , 1997 .
[29] Dénes Petz,et al. On the Riemannian metric of α-entropies of density matrices , 1996 .
[30] The quantum information manifold for ε-bounded forms☆ , 1999, math-ph/9910031.
[31] E. Carlen. Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .
[32] Viacheslav P. Belavkin,et al. Quantum communications and measurement , 1995 .
[33] H. Hasegawa. α-Divergence of the non-commutative information geometry , 1993 .
[34] H. Nagaoka. Differential Geometrical Aspects of Quantum State Estimation and Relative Entropy , 1995 .
[35] S. Eguchi. Geometry of minimum contrast , 1992 .
[36] M. Ruskai,et al. Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.
[37] Connections and Metrics Respecting Standard Purification , 1998, quant-ph/9806028.
[38] W. Gangbo,et al. Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.
[39] K. Nomizu,et al. Foundations of Differential Geometry , 1963 .
[40] M. Grasselli,et al. On the Uniqueness of the Chentsov Metric in Quantum Information Geometry , 2000, math-ph/0006030.
[41] Peter Sollich,et al. Disordered and Complex Systems , 2001 .
[42] Shun-ichi Amari,et al. Methods of information geometry , 2000 .
[43] W. Wootters. Statistical distance and Hilbert space , 1981 .
[44] E. Wigner,et al. INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[45] Thomas Friedrich,et al. Die Fisher‐Information und symplektische Strukturen , 1991 .
[46] A. Uhlmann,et al. Connections and metrics respecting purification of quantum states , 1999 .