Wigner–Yanase information on quantum state space: The geometric approach

In the search of appropriate Riemannian metrics on quantum state space, the concept of statistical monotonicity, or contraction under coarse graining, has been proposed by Chentsov. The metrics with this property have been classified by Petz. All the elements of this family of geometries can be seen as quantum analogs of Fisher information. Although there exists a number of general theorems shedding light on this subject, many natural questions, also stemming from applications, are still open. In this paper we discuss a particular member of the family, the Wigner–Yanase information. Using a well-known approach that mimics the classical pull-back approach to Fisher information, we are able to give explicit formulas for the geodesic distance, the geodesic path, the sectional and scalar curvatures associated to Wigner–Yanase information. Moreover, we show that this is the only monotone metric for which such an approach is possible.

[1]  A. Jenčová Quantum information geometry and standard purification , 2002 .

[2]  R. Bhatia Matrix Analysis , 1996 .

[3]  On the curvature of monotone metrics and a conjecture concerning the Kubo-Mori metric , 1999, quant-ph/9906009.

[4]  N. Chentsov,et al.  Markov invariant geometry on manifolds of states , 1991 .

[5]  P. Gibilisco,et al.  Monotone metrics on statistical manifolds of density matrices by geometry of non-commutative L2-spaces , 2001 .

[6]  A. Uhlmann GEOMETRIC PHASES AND RELATED STRUCTURES , 1995 .

[7]  M. Grasselli DUALITY, MONOTONICITY AND THE WIGNER YANASE DYSON METRICS , 2002, math-ph/0212022.

[8]  H. Hasegawa Non-Commutative Extension of the Information Geometry , 1995 .

[9]  A. Jenčová Geometry of quantum states: dual connections and divergence functions , 2001 .

[10]  Paolo Gibilisco,et al.  A CHARACTERISATION OF WIGNER YANASE SKEW INFORMATION AMONG STATISTICALLY MONOTONE METRICS , 2001 .

[11]  H. Hasegawa DUAL GEOMETRY OF THE WIGNER–YANASE–DYSON INFORMATION CONTENT , 2003 .

[12]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[13]  Denes Petz,et al.  Covariance and Fisher information in quantum mechanics , 2001, quant-ph/0106125.

[14]  D. Petz,et al.  Geometries of quantum states , 1996 .

[15]  D. Petz Geometry of canonical correlation on the state space of a quantum system , 1994 .

[16]  J. Dittmann The scalar curvature of the Bures metric on the space of density matrices , 1998, quant-ph/9810012.

[17]  S. Braunstein,et al.  Geometry of Quantum States , 1995 .

[18]  P. Gibilisco,et al.  On the characterisation of dual statistically monotone metrics , 2003 .

[19]  A. Uhlmann Density operators as an arena for differential geometry , 1993 .

[20]  N. N. Chent︠s︡ov Statistical decision rules and optimal inference , 1982 .

[21]  Giovanni Pistone,et al.  Connections on non-parametric statistical manifolds by Orlicz space geometry , 1998 .

[22]  Giovanni Pistone,et al.  An Infinite-Dimensional Geometric Structure on the Space of all the Probability Measures Equivalent to a Given One , 1995 .

[23]  Osamu Hirota,et al.  "Quantum Communication, Computing, and Measurement" , 2012 .

[24]  D. Petz Monotone metrics on matrix spaces , 1996 .

[25]  Armin Uhlmann,et al.  Parallel transport and “quantum holonomy” along density operators , 1986 .

[26]  J. Dittmann On the Riemannian metric on the space of density matrices , 1995 .

[27]  P. Gibilisco,et al.  CONNECTIONS ON STATISTICAL MANIFOLDS OF DENSITY OPERATORS BY GEOMETRY OF NONCOMMUTATIVE Lp-SPACES , 1999 .

[28]  D. Petz,et al.  Non-Commutative Extension of Information Geometry II , 1997 .

[29]  Dénes Petz,et al.  On the Riemannian metric of α-entropies of density matrices , 1996 .

[30]  The quantum information manifold for ε-bounded forms☆ , 1999, math-ph/9910031.

[31]  E. Carlen Superadditivity of Fisher's information and logarithmic Sobolev inequalities , 1991 .

[32]  Viacheslav P. Belavkin,et al.  Quantum communications and measurement , 1995 .

[33]  H. Hasegawa α-Divergence of the non-commutative information geometry , 1993 .

[34]  H. Nagaoka Differential Geometrical Aspects of Quantum State Estimation and Relative Entropy , 1995 .

[35]  S. Eguchi Geometry of minimum contrast , 1992 .

[36]  M. Ruskai,et al.  Monotone Riemannian metrics and relative entropy on noncommutative probability spaces , 1998, math-ph/9808016.

[37]  Connections and Metrics Respecting Standard Purification , 1998, quant-ph/9806028.

[38]  W. Gangbo,et al.  Constrained steepest descent in the 2-Wasserstein metric , 2003, math/0312063.

[39]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[40]  M. Grasselli,et al.  On the Uniqueness of the Chentsov Metric in Quantum Information Geometry , 2000, math-ph/0006030.

[41]  Peter Sollich,et al.  Disordered and Complex Systems , 2001 .

[42]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[43]  W. Wootters Statistical distance and Hilbert space , 1981 .

[44]  E. Wigner,et al.  INFORMATION CONTENTS OF DISTRIBUTIONS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Thomas Friedrich,et al.  Die Fisher‐Information und symplektische Strukturen , 1991 .

[46]  A. Uhlmann,et al.  Connections and metrics respecting purification of quantum states , 1999 .