Adaptive Estimation of Three-Dimensional Structure in the Human Brain

Perceiving the three-dimensional (3D) properties of the environment relies on the brain bringing together ambiguous cues (e.g., binocular disparity, shading, texture) with information gained from short- and long-term experience. Perceptual aftereffects, in which the perception of an ambiguous 3D stimulus is biased away from the shape of a previously viewed stimulus, provide a sensitive means of probing this process, yet little is known about their neural basis. Here, we investigate 3D aftereffects using psychophysical and functional MRI (fMRI) adaptation paradigms to gain insight into the cortical circuits that mediate the perceptual interpretation of ambiguous depth signals. Using two classic bistable stimuli (Mach card, kinetic depth effect), we test aftereffects produced by 3D shapes defined by binocular (disparity) or monocular (texture, shading) depth cues. We show that the processing of ambiguous 3D stimuli in dorsal visual cortical areas (V3B/KO, V7) and posterior parietal regions is modulated by adaptation in line with perceptual aftereffects. Similar behavioral and fMRI adaptation effects for the two types of bistable stimuli suggest common neural substrates for depth aftereffects independent of the inducing depth cues (disparity, texture, shading). In line with current thinking about the role of adaptation in sensory optimization, our findings provide evidence that estimation of 3D shape in dorsal cortical areas takes account of the adaptive context to resolve depth ambiguity and interpret 3D structure.

[1]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[2]  John M. Findlay,et al.  The area of spatial integration for initial horizontal disparity vergence , 1998, Vision Research.

[3]  Zoe Kourtzi,et al.  Neural correlates of disparity-defined shape discrimination in the human brain. , 2007, Journal of neurophysiology.

[4]  R. van Ee,et al.  Early interactions between neuronal adaptation and voluntary control determine perceptual choices in bistable vision. , 2008, Journal of vision.

[5]  Alex R. Wade,et al.  The specificity of cortical region KO to depth structure , 2006, NeuroImage.

[6]  Takahiro Doi,et al.  Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4. , 2005, Journal of neurophysiology.

[7]  James T Todd,et al.  Perceptual biases in the interpretation of 3D shape from shading , 2004, Vision Research.

[8]  Stephen A. Engel,et al.  Neural Response to Perception of Volume in the Lateral Occipital Complex , 2001, Neuron.

[9]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  E. DeYoe,et al.  Mapping striate and extrastriate visual areas in human cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[11]  David C. Knill,et al.  Introduction: a Bayesian formulation of visual perception , 1996 .

[12]  J. Aloimonos,et al.  On the kinetic depth effect , 1989, Biological Cybernetics.

[13]  Cynthia S. Sahm,et al.  Past trials influence perception of ambiguous motion quartets through pattern completion. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. Shapiro,et al.  The contingent negative variation (CNV) event-related potential (ERP) predicts the attentional blink , 2008 .

[15]  Alex R. Wade,et al.  Visual areas and spatial summation in human visual cortex , 2001, Vision Research.

[16]  S. Nakamizo,et al.  Stereoscopic depth aftereffects without retinal position correspondence between adaptation and test stimuli , 2005, Vision Research.

[17]  G. Orban,et al.  Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. , 2000, Science.

[18]  D. Heeger,et al.  Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry , 2000, Nature Neuroscience.

[19]  C. Blakemore,et al.  Stereoscopic Depth Aftereffect Produced without Monocular Cues , 1971, Science.

[20]  R. van Ee,et al.  Activation in Visual Cortex Correlates with the Awareness of Stereoscopic Depth , 2005 .

[21]  Nikos K. Logothetis,et al.  Three-Dimensional Shape Representation in Monkey Cortex , 2002, Neuron.

[22]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[23]  Alan A. Stocker,et al.  Constraining a Bayesian Model of Human Visual Speed Perception , 2004, NIPS.

[24]  G. Boynton,et al.  Orientation-Specific Adaptation in Human Visual Cortex , 2003, The Journal of Neuroscience.

[25]  R. Blake,et al.  The interplay between stereopsis and structure from motion , 1991, Perception & psychophysics.

[26]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[27]  Timothy J. Andrews,et al.  Activity in the Fusiform Gyrus Predicts Conscious Perception of Rubin's Vase–Face Illusion , 2002, NeuroImage.

[28]  E. R. Cohen,et al.  Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect , 1998, Current Biology.

[29]  Gregory C DeAngelis,et al.  Coding of horizontal disparity and velocity by MT neurons in the alert macaque. , 2003, Journal of neurophysiology.

[30]  Martin J. Wainwright,et al.  Visual adaptation as optimal information transmission , 1999, Vision Research.

[31]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[32]  M Nawrot,et al.  Neural integration of information specifying structure from stereopsis and motion. , 1989, Science.

[33]  W. Kohler,et al.  Figural after-effects in the third dimensions of visual space. , 1947, The American journal of psychology.

[34]  M. Webster,et al.  Visual adaptation: Neural, psychological and computational aspects , 2007, Vision Research.

[35]  J. Gibson,et al.  The Negative After-Effect of the Perception of a Surface Slanted in the Third Dimension , 1959 .

[36]  G. Boynton,et al.  Adaptation: from single cells to BOLD signals , 2006, Trends in Neurosciences.

[37]  N Long,et al.  Stereoscopic depth aftereffects with random-dot patterns. , 1973, Vision research.

[38]  H. Barlow,et al.  Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural After-effects , 1963, Nature.

[39]  D. Kersten,et al.  Orientation-tuned FMRI adaptation in human visual cortex. , 2005, Journal of neurophysiology.

[40]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[41]  M. Landy,et al.  Bayesian Modelling of Visual Perception , 2002 .

[42]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[43]  David J Heeger,et al.  Stereoscopic processing of absolute and relative disparity in human visual cortex. , 2004, Journal of neurophysiology.

[44]  G. DeAngelis,et al.  Contribution of Area MT to Stereoscopic Depth Perception Choice-Related Response Modulations Reflect Task Strategy , 2004, Neuron.

[45]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[46]  David A. Leopold,et al.  Stable perception of visually ambiguous patterns , 2002, Nature Neuroscience.

[47]  Guy Marchal,et al.  Human Cortical Regions Involved in Extracting Depth from Motion , 1999, Neuron.

[48]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[49]  Tomaso Poggio,et al.  Role of learning in three-dimensional form perception , 1996, Nature.

[50]  T. Knapen,et al.  Slant perception, and its voluntary control, do not govern the slant aftereffect: Multiple slant signals adapt independently , 2006, Vision Research.

[51]  David J. Fleet,et al.  Human cortical activity correlates with stereoscopic depth perception. , 2001, Journal of neurophysiology.

[52]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[53]  Alex R. Wade,et al.  Extended Concepts of Occipital Retinotopy , 2005 .

[54]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[55]  M. Ernst,et al.  Experience can change the 'light-from-above' prior , 2004, Nature Neuroscience.

[56]  Z. Kourtzi,et al.  Multivoxel Pattern Selectivity for Perceptually Relevant Binocular Disparities in the Human Brain , 2008, The Journal of Neuroscience.

[57]  R. S. J. Frackowiak,et al.  Human brain activity during spontaneously reversing perception of ambiguous figures , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[58]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Fulvio Domini,et al.  3D after-effects are due to shape and not disparity adaptation , 2001, Vision Research.

[60]  R. Blake,et al.  Neural bases of binocular rivalry , 2006, Trends in Cognitive Sciences.

[61]  A. Parker,et al.  Range and mechanism of encoding of horizontal disparity in macaque V1. , 2002, Journal of neurophysiology.

[62]  Pawan Sinha,et al.  Top-down influences on stereoscopic depth-perception , 1998, Nature Neuroscience.

[63]  P. Mamassian,et al.  Prior knowledge on the illumination position , 2001, Cognition.

[64]  Guy A. Orban,et al.  The Extraction of 3D Shape from Texture and Shading in the Human Brain , 2008, Cerebral cortex.

[65]  G. Orban,et al.  Attention to 3-D Shape, 3-D Motion, and Texture in 3-D Structure from Motion Displays , 2004, Journal of Cognitive Neuroscience.

[66]  G. Orban,et al.  Selectivity of Neuronal Adaptation Does Not Match Response Selectivity: A Single-Cell Study of the fMRI Adaptation Paradigm , 2006, Neuron.

[67]  Peter Janssen,et al.  Extracting 3D structure from disparity , 2006, Trends in Neurosciences.

[68]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[69]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[70]  Ernst Mach,et al.  The Analysis of Sensations. , 1916 .

[71]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[72]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[73]  H H Bülthoff,et al.  A Prior for Global Convexity in Local Shape-from-Shading , 2001, Perception.

[74]  H. Barlow Vision: A theory about the functional role and synaptic mechanism of visual after-effects , 1991 .

[75]  T. Albright,et al.  Recent History of Stimulus Speeds Affects the Speed Tuning of Neurons in Area MT , 2007, The Journal of Neuroscience.

[76]  Bruno A Olshausen,et al.  Processing shape, motion and three-dimensional shape-from-motion in the human cortex. , 2003, Cerebral cortex.

[77]  Frans A. J. Verstraten,et al.  Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization , 2005, Vision Research.

[78]  Clifton M Schor,et al.  Stereo-slant adaptation is high level and does not involve disparity coding. , 2005, Journal of vision.

[79]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[80]  Ravi S. Menon,et al.  Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. , 1999, Journal of neurophysiology.

[81]  Fang Fang,et al.  Stabilized Structure from Motion without Disparity Induces Disparity Adaptation , 2004, Current Biology.