Traffic estimation of the PowerMatcher application for demand supply matching in smart grids

The electrical grid is changing from a centralized system with predictable and controllable power generation to a system integrating large numbers of distributed energy resources including weather-dependent renewables. As a consequence, the future retail energy market for electrical energy will have many more participants and see more volatile prices than today, creating the need for new communication and trading infrastructures facilitating. In this paper, we briefly review PowerMatcher as a possible approach for such an infrastructure, and analytically evaluate its communication characteristics. PowerMatcher is a multiagent based smart grid communication framework developed by TNO which enables market integration of distributed energy resources and automatic demand supply matching. While the trading side of the framework is well understood, there is no study that considers the communication side. Our results show that PowerMatcher enables scalable retail energy transactions with millions of participants requiring only moderate resources on the communication's side.

[1]  Boudewijn R. Haverkort,et al.  Performance of LTE for Smart Grid Communications , 2014, MMB/DFT.

[2]  Jaap Gordijn,et al.  Agent-Based Electricity Balancing with Distributed Energy Resources,  A Multiperspective Case Study , 2008, Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008).

[3]  G. Venekamp,et al.  Dynamic pricing by scalable energy management systems — Field experiences and simulation results using PowerMatcher , 2012, 2012 IEEE Power and Energy Society General Meeting.

[4]  Dominik Möst,et al.  Future power markets , 2007, Wirtsch..

[5]  Wolfgang Ketter,et al.  Agent-based competitive simulation: exploring future retail energy markets , 2010, ICEC '10.

[6]  Wenpeng Luan,et al.  Smart grid communication network capacity planning for power utilities , 2010, IEEE PES T&D 2010.

[7]  G. Deconinck,et al.  An evaluation of two-way communication means for advanced metering in Flanders (Belgium) , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[8]  Bart Roossien,et al.  Field test upscaling of multi-agent coordination in the electricity grid , 2009 .

[9]  G. A. Pagani,et al.  Smart meter aware domestic energy trading agents , 2011, IEEMC '11.

[10]  J. K. Kok,et al.  PowerMatcher: multiagent control in the electricity infrastructure , 2005, AAMAS '05.

[11]  C. J. Warmer,et al.  Virtual power plant field experiment using 10 micro-CHP units at consumer premises , 2008 .

[12]  Andreas Geyer-Schulz,et al.  Impacts of Distributed Generation from Virtual Power Plants , 2005 .

[13]  David Nestle,et al.  Bidirektionales Energiemanagement im Niederspannungsnetz: Strategie, Umsetzung und Anwendungen , 2008, Elektrotech. Informationstechnik.

[14]  Yasir Saleem,et al.  Network Simulator NS-2 , 2015 .

[15]  Frieder Borggrefe,et al.  Auswirkungen fluktuierender Windverstromung auf Strommärkte und Übertragungsnetze , 2009 .

[16]  Anjan Bose,et al.  Bandwidth and latency requirements for smart transmission grid applications , 2013, PES 2013.