Numerical investigation of Mach number consistent Roe solvers for the Euler equations of gas dynamics

While traditional approaches to prevent the carbuncle phenomenon in gas dynamics simulations increase the viscosity on entropy and shear waves near shocks, it was quite recently suggested to instead decrease the viscosity on the acoustic waves for low Mach numbers. The goal is to achieve what, in this paper, we call Mach number consistency: for all waves, the numerical viscosity decreases with the same order of the Mach number when the Mach number tends to zero. We take the simple approach that was used for the proof of concept together with the simple model for the increased numerical viscosity on linear waves and investigate the possibilities of combining both in an adaptive manner while locally maintaining Mach number consistency.

[1]  HI,et al.  The Effects of Numerical Viscosities I . Slowly Moving Shocks , 1996 .

[2]  Nikolaus A. Adams,et al.  A low dissipation method to cure the grid-aligned shock instability , 2020, J. Comput. Phys..

[3]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[4]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[5]  Philip L. Roe,et al.  Shock Capturing Anomalies and the Jump Conditions in One Dimension , 2011 .

[6]  A. Rodionov Artificial viscosity to cure the shock instability in high-order Godunov-type schemes , 2018, Computers & Fluids.

[7]  Volker Elling,et al.  The carbuncle phenomenon is incurable , 2009 .

[8]  A. Gautschy,et al.  Computational methods for astrophysical fluid flow , 1998 .

[9]  W. Xie,et al.  An accurate and robust HLLC‐type Riemann solver for the compressible Euler system at various Mach numbers , 2018, International Journal for Numerical Methods in Fluids.

[10]  Guangwei Yuan,et al.  A robust HLLC-type Riemann solver for strong shock , 2016, J. Comput. Phys..

[11]  Jean-Marc Moschetta,et al.  Shock wave instability and the carbuncle phenomenon: same intrinsic origin? , 2000, Journal of Fluid Mechanics.

[12]  Keiichi Kitamura,et al.  A further survey of shock capturing methods on hypersonic heating issues , 2013 .

[13]  Nikolaus A. Adams,et al.  A shock-stable modification of the HLLC Riemann solver with reduced numerical dissipation , 2020, J. Comput. Phys..

[14]  C. Loh,et al.  A Time-Accurate Upwind Unstructured Finite Volume Method for Compressible Flow with Cure of Pathological Behaviors , 2007 .

[15]  Wasilij Barsukow,et al.  A Numerical Scheme for the Compressible Low-Mach Number Regime of Ideal Fluid Dynamics , 2016, Journal of Scientific Computing.

[16]  Jean-Marc Moschetta,et al.  The Carbuncle Phenomenon: A Genuine Euler Instability ? , 2001 .

[17]  Chi-Wang Shu,et al.  Topological structure of shock induced vortex breakdown , 2009, Journal of Fluid Mechanics.

[18]  Alexander V. Rodionov Artificial viscosity to cure the carbuncle phenomenon: The three-dimensional case , 2018, J. Comput. Phys..

[19]  Marcus V. C. Ramalho,et al.  A Possible Mechanism for the Appearance of the Carbuncle Phenomenon in Aerodynamic Simulations , 2010 .

[20]  Dong Yan,et al.  Cures for numerical shock instability in HLLC solver , 2011 .

[21]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[22]  Chao Yan,et al.  Effective low-Mach number improvement for upwind schemes , 2018, Comput. Math. Appl..

[23]  Stéphane Dellacherie,et al.  Construction of modified Godunov-type schemes accurate at any Mach number for the compressible Euler system , 2016 .

[24]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[25]  Keiichi Kitamura,et al.  An Evaluation of Euler Fluxes for Hypersonic Flow Computations , 2007 .

[26]  Friedemann Kemm,et al.  A note on the carbuncle phenomenon in shallow water simulations , 2014 .

[27]  Michael K. Smart,et al.  Aspects of shock wave-induced vortex breakdown , 2000 .

[28]  Alexander V. Rodionov,et al.  Artificial viscosity in Godunov-type schemes to cure the carbuncle phenomenon , 2017, J. Comput. Phys..

[29]  J. Quirk A Contribution to the Great Riemann Solver Debate , 1994 .

[30]  Felix Rieper,et al.  On the dissipation mechanism of upwind-schemes in the low Mach number regime: A comparison between Roe and HLL , 2010, J. Comput. Phys..

[31]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[32]  Hua Li,et al.  On numerical instabilities of Godunov-type schemes for strong shocks , 2017, J. Comput. Phys..

[33]  Daniel Wei-Ming Zaide,et al.  Numerical Shockwave Anomalies , 2012 .

[34]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..

[35]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[36]  Philipp Birken,et al.  L2Roe: a low dissipation version of Roe's approximate Riemann solver for low Mach numbers , 2016 .

[37]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[38]  Philip L. Roe,et al.  On carbuncles and other excrescences , 2005 .

[39]  Chongam Kim,et al.  Cures for the shock instability: development of a shock-stable Roe scheme , 2003 .

[40]  H. Deconinck,et al.  An energy-dissipative remedy against carbuncle: Application to hypersonic flows around blunt bodies , 2016 .

[41]  Xiaogang Deng,et al.  Evaluation of Euler fluxes by a high-order CFD scheme: shock instability , 2014 .

[42]  Eitan Tadmor,et al.  Hyperbolic Problems: Theory, Numerics and Applications , 2009 .

[43]  Carbuncles as self-similar entropy solutions , 2006, math/0609666.

[44]  Jean-Marc Moschetta,et al.  Shock wave numerical structure and the carbuncle phenomenon , 2005 .

[45]  Jang-Hyuk Kwon,et al.  On the dissipation mechanism of Godunov-type schemes , 2003 .

[46]  Jian Yu,et al.  Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon , 2018, J. Comput. Phys..

[47]  Philip L. Roe,et al.  On Postshock Oscillations Due to Shock Capturing Schemes in Unsteady Flows , 1997 .

[48]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[49]  J. C. Mandal,et al.  Robust HLL-type Riemann solver capable of resolving contact discontinuity , 2012 .

[50]  Michael Dumbser,et al.  A matrix stability analysis of the carbuncle phenomenon , 2004 .

[51]  Sutthisak Phongthanapanich,et al.  Healing of shock instability for Roe's flux‐difference splitting scheme on triangular meshes , 2009 .

[52]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[53]  H. Guillard,et al.  On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes , 2004 .

[54]  Christiane Helzel,et al.  Crossflow Instabilities in the Approximation of Detonation Waves , 2001 .

[55]  J. C. Mandal,et al.  A cure for numerical shock instability in HLLC Riemann solver using antidiffusion control , 2018, Computers & Fluids.

[56]  Richard Sanders,et al.  Regular ArticleMultidimensional Dissipation for Upwind Schemes: Stability and Applications to Gas Dynamics☆ , 1998 .

[57]  Friedemann Kemm,et al.  A Carbuncle Free Roe-Type Solver for the Euler Equations , 2008 .

[58]  Friedemann Kemm On the Proper Setup of the Double Mach Reflection as a Test Case for the Resolution of Gas Dynamics Codes , 2014 .

[59]  Jean-Marc Moschetta,et al.  Robustness versus accuracy in shock-wave computations , 2000 .

[60]  Friedemann Kemm,et al.  Heuristical and numerical considerations for the carbuncle phenomenon , 2015, Appl. Math. Comput..