Bioenergetic constraints on the evolution of complex life.

All morphologically complex life on Earth, beyond the level of cyanobacteria, is eukaryotic. All eukaryotes share a common ancestor that was already a complex cell. Despite their biochemical virtuosity, prokaryotes show little tendency to evolve eukaryotic traits or large genomes. Here I argue that prokaryotes are constrained by their membrane bioenergetics, for fundamental reasons relating to the origin of life. Eukaryotes arose in a rare endosymbiosis between two prokaryotes, which broke the energetic constraints on prokaryotes and gave rise to mitochondria. Loss of almost all mitochondrial genes produced an extreme genomic asymmetry, in which tiny mitochondrial genomes support, energetically, a massive nuclear genome, giving eukaryotes three to five orders of magnitude more energy per gene than prokaryotes. The requirement for endosymbiosis radically altered selection on eukaryotes, potentially explaining the evolution of unique traits, including the nucleus, sex, two sexes, speciation, and aging.

[1]  T. Cavalier-smith,et al.  Eukaryotes with no mitochondria , 1987, Nature.

[2]  T. Lenton,et al.  The Rise of Oxygen and Complex Life , 2012, The Journal of eukaryotic microbiology.

[3]  C. V. Dohlen,et al.  Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts , 2001, Nature.

[4]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[5]  J. Allen,et al.  Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genomes. , 1993, Journal of theoretical biology.

[6]  B. Schoepp‐Cothenet,et al.  The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[7]  Daniel J. G. Lahr,et al.  Estimating the timing of early eukaryotic diversification with multigene molecular clocks , 2011, Proceedings of the National Academy of Sciences.

[8]  J. Amend,et al.  The energetics of organic synthesis inside and outside the cell , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[9]  N. Lane Energetics and genetics across the prokaryote-eukaryote divide , 2011, Biology Direct.

[10]  Tomasello,et al.  A congruent phylogenomic signal places eukaryotes within the Archaea , 2012, Proceedings of the Royal Society B: Biological Sciences.

[11]  C. Duve The origin of eukaryotes: a reappraisal , 2007, Nature Reviews Genetics.

[12]  Josef D. Franke,et al.  Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus , 2010, Proceedings of the National Academy of Sciences.

[13]  R. Seymour,et al.  Selection for mitonuclear co-adaptation could favour the evolution of two sexes , 2012, Proceedings of the Royal Society B: Biological Sciences.

[14]  P. Keightley,et al.  Interference among deleterious mutations favours sex and recombination in finite populations , 2006, Nature.

[15]  Fuli Li,et al.  Coupled Ferredoxin and Crotonyl Coenzyme A (CoA) Reduction with NADH Catalyzed by the Butyryl-CoA Dehydrogenase/Etf Complex from Clostridium kluyveri , 2007, Journal of bacteriology.

[16]  R. Burton,et al.  Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. , 2001, Trends in genetics : TIG.

[17]  J. Leu,et al.  Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[18]  A. Lambowitz,et al.  Mobile group II introns. , 2004, Annual review of genetics.

[19]  A. Templeton,et al.  Mitochondrial bioenergetics as a major motive force of speciation , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[20]  Dieter Braun,et al.  Extreme accumulation of nucleotides in simulated hydrothermal pore systems , 2007, Proceedings of the National Academy of Sciences.

[21]  Laurence D. Hurst,et al.  Cytoplasmic fusion and the nature of sexes , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  Nick Lane,et al.  The Costs of Breathing , 2011, Science.

[23]  D. Wujek Intracellular Bacteria in the Blue-Green Alga Pleurocapsa minor , 1979 .

[24]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[25]  John M. Berrisford,et al.  Crystal structure of the entire respiratory complex I , 2013, Nature.

[26]  B Franz Lang,et al.  Mitochondria of protists. , 2004, Annual review of genetics.

[27]  C. Moraes,et al.  Functional Constraints of Nuclear-Mitochondrial DNA Interactions in Xenomitochondrial Rodent Cell Lines* 210 , 2000, The Journal of Biological Chemistry.

[28]  Nicolas Galtier,et al.  The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals , 2009, BMC Evolutionary Biology.

[29]  S. Bell,et al.  Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes , 2007, Proceedings of the National Academy of Sciences.

[30]  W. Martin,et al.  Biochemistry and Evolution of Anaerobic Energy Metabolism in Eukaryotes , 2012, Microbiology and Molecular Reviews.

[31]  E. Koonin,et al.  The origins of phagocytosis and eukaryogenesis , 2009, Biology Direct.

[32]  F. Harold The Vital Force: A Study of Bioenergetics , 1986 .

[33]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[34]  John F. Allen,et al.  The function of genomes in bioenergetic organelles. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[35]  N. Blackstone Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[37]  D. Bhattacharya,et al.  Uniting sex and eukaryote origins in an emerging oxygenic world , 2010, Biology Direct.

[38]  R. Burton,et al.  The Sorry State of F2 Hybrids: Consequences of Rapid Mitochondrial DNA Evolution in Allopatric Populations , 2006, The American Naturalist.

[39]  J. Archibald,et al.  Origin of eukaryotic cells: 40 years on , 2011, Symbiosis.

[40]  R. Burton,et al.  A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? , 2012, Molecular ecology.

[41]  P. Keightley,et al.  Selective interference among deleterious mutations favours sex and recombination in finite populations regardless of the nature of epistasis , 2006 .

[42]  N. Moran,et al.  Colloquium Papers: Symbiosis as an adaptive process and source of phenotypic complexity , 2007 .

[43]  L. Sagan On the origin of mitosing cells , 1967, Journal of theoretical biology.

[44]  H. Yonekawa,et al.  Complete repopulation of mouse mitochondrial DNA-less cells with rat mitochondrial DNA restores mitochondrial translation but not mitochondrial respiratory function. , 2000, Genetics.

[45]  K. Clements,et al.  Extreme polyploidy in a large bacterium , 2008, Proceedings of the National Academy of Sciences.

[46]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[47]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[48]  C. Gissi,et al.  Nucleotide Substitution Rate of Mammalian Mitochondrial Genomes , 1999, Journal of Molecular Evolution.

[49]  Davide Pisani,et al.  Supertrees disentangle the chimerical origin of eukaryotic genomes. , 2007, Molecular biology and evolution.

[50]  Marc Strous,et al.  Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell , 2001, Archives of Microbiology.

[51]  Andrew Pohorille,et al.  Self-assembly and function of primitive cell membranes. , 2009, Research in microbiology.

[52]  Jodie J. Yin,et al.  A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes , 2004, Genome Biology.

[53]  The archaebacterial origin of eukaryotes , 2009 .

[54]  Patrick J. Keeling,et al.  A kingdom's progress: Archezoa and the origin of eukaryotes , 1998 .

[55]  Eugene V. Koonin,et al.  Introns and the origin of nucleus–cytosol compartmentalization , 2006, Nature.

[56]  J. Amend,et al.  Energetics of Biomolecule Synthesis on Early Earth , 2009 .

[57]  P. Mitchell The Origin of Life and the Formation and Organizing Functions of Natural Membranes , 1959 .

[58]  R. Burton,et al.  INTERPOPULATION HYBRID BREAKDOWN MAPS TO THE MITOCHONDRIAL GENOME , 2008, Evolution; international journal of organic evolution.

[59]  E. Angert,et al.  DNA replication and genomic architecture of very large bacteria. , 2012, Annual review of microbiology.

[60]  R. Daniel,et al.  On the emergence of life via catalytic iron‐sulphide membranes , 1993 .

[61]  W. Martin,et al.  The Origin of Membrane Bioenergetics , 2012, Cell.

[62]  W. Martin,et al.  The energetics of genome complexity , 2010, Nature.

[63]  E. Koonin Intron-dominated genomes of early ancestors of eukaryotes. , 2009, The Journal of heredity.

[64]  C. Lange,et al.  Ploidy in cyanobacteria. , 2011, FEMS microbiology letters.

[65]  M. Hengartner Apoptosis: Death cycle and Swiss army knives , 1998, Nature.

[66]  Anne-Kristin Kaster,et al.  Coupling of ferredoxin and heterodisulfide reduction via electron bifurcation in hydrogenotrophic methanogenic archaea , 2011, Proceedings of the National Academy of Sciences.

[67]  D. Wallace Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[68]  T. Gregory Synergy between sequence and size in Large-scale genomics , 2005, Nature Reviews Genetics.

[69]  D. Braun,et al.  Escalation of polymerization in a thermal gradient , 2013, Proceedings of the National Academy of Sciences.

[70]  Ji Yu,et al.  The dynamic nature of the bacterial cytoskeleton , 2009, Cellular and Molecular Life Sciences.

[71]  A. Pinevich INTRACYTOPLASMIC MEMBRANE STRUCTURES IN BACTERIA , 1997 .

[72]  A. Ducluzeau,et al.  On the universal core of bioenergetics. , 2013, Biochimica et biophysica acta.

[73]  Michael Y. Galperin,et al.  Origin of first cells at terrestrial, anoxic geothermal fields , 2012, Proceedings of the National Academy of Sciences.

[74]  W. Martin,et al.  Eukaryotic evolution, changes and challenges , 2006, Nature.

[75]  E. Koonin The origin and early evolution of eukaryotes in the light of phylogenomics , 2010, Genome Biology.

[76]  E. Jurkevitch,et al.  Predation between prokaryotes and the origin of eukaryotes , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[77]  N Lane,et al.  Why are cells powered by proton gradients , 2010 .

[78]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[79]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[80]  Z. Kozmík,et al.  Eye evolution: common use and independent recruitment of genetic components , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[81]  N. Lane Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[82]  S. Zimmerly,et al.  A diversity of uncharacterized reverse transcriptases in bacteria , 2008, Nucleic acids research.

[83]  W. Martin,et al.  On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[84]  C. Kurland,et al.  Origins of mitochondria and hydrogenosomes. , 1999, Current opinion in microbiology.

[85]  V. Bianciotto,et al.  Endosymbiotic bacteria in mycorrhizal fungi: from their morphology to genomic sequences , 2002, Plant and Soil.

[86]  W. Martin,et al.  Hydrothermal vents and the origin of life , 2008, Nature Reviews Microbiology.

[87]  C. V. Dohlen,et al.  Mealybug b-proteobacterial endosymbionts contain g-proteobacterial symbionts , 2022 .

[88]  C. Moraes,et al.  Human Xenomitochondrial Cybrids , 1998, The Journal of Biological Chemistry.

[89]  N. Galtier The intriguing evolutionary dynamics of plant mitochondrial DNA , 2011, BMC Biology.

[90]  Walter Gilbert,et al.  The evolution of spliceosomal introns: patterns, puzzles and progress , 2006, Nature Reviews Genetics.

[91]  J. Archibald,et al.  The eukaryotic tree of life: endosymbiosis takes its TOL. , 2008, Trends in ecology & evolution.

[92]  N. Arndt,et al.  Processes on the Young Earth and the Habitats of Early Life , 2012 .

[93]  M. Schulte,et al.  The Emergence of Metabolism from Within Hydrothermal Systems , 1998 .

[94]  J. Lake,et al.  The ring of life provides evidence for a genome fusion origin of eukaryotes , 2004, Nature.

[95]  R. Thauer,et al.  Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. , 2013, Biochimica et biophysica acta.

[96]  T. Cavalier-smith Archaebacteria and Archezoa , 1989, Nature.

[97]  Anne-Kristin Kaster,et al.  Methanogenic archaea: ecologically relevant differences in energy conservation , 2008, Nature Reviews Microbiology.

[98]  M. Russell,et al.  The inevitable journey to being , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[99]  W. Martin,et al.  How did LUCA make a living? Chemiosmosis in the origin of life. , 2010, BioEssays : news and reviews in molecular, cellular and developmental biology.

[100]  M. Giezen Hydrogenosomes and Mitosomes: Conservation and Evolution of Functions , 2009 .

[101]  W. Martin,et al.  The hydrogen hypothesis for the first eukaryote , 1998, Nature.

[102]  Jack W. Szostak,et al.  Formation of Protocell-like Vesicles in a Thermal Diffusion Column , 2009, Journal of the American Chemical Society.

[103]  D. Frishman,et al.  Coevolution predicts direct interactions between mtDNA-encoded and nDNA-encoded subunits of oxidative phosphorylation complex i. , 2010, Journal of molecular biology.

[104]  B. Maden Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. , 2000, The Biochemical journal.

[105]  D. Wallace,et al.  Adaptive selection of mitochondrial complex I subunits during primate radiation. , 2006, Gene.

[106]  N. Sleep,et al.  Serpentinite and the dawn of life , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[107]  R. Seymour,et al.  Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes , 2013, Proceedings of the Royal Society B: Biological Sciences.

[108]  G. Wächtershäuser,et al.  Pyrite Formation, the First Energy Source for Life: a Hypothesis , 1988 .

[109]  H. N. Schulz,et al.  Big bacteria. , 2001, Annual review of microbiology.

[110]  W. Martin,et al.  The rocky roots of the acetyl-CoA pathway. , 2004, Trends in biochemical sciences.

[111]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.