Atacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel’dovich measurements
暂无分享,去创建一个
Edward J. Wollack | J. Dunkley | L. Page | D. Spergel | J. Austermann | E. Denison | G. Hilton | L. Vale | N. Battaglia | J. Hill | K. Huffenberger | F. Nati | B. Partridge | R. Bean | E. Calabrese | J. Hughes | Zhilei Xu | A. Schillaci | A. Duivenvoorden | J. Ullom | C. Sif'on | S. Ferraro | M. Niemack | J. McMahon | A. V. Engelen | M. Devlin | J. Beall | J. Hubmayr | S. Staggs | L. Newburgh | T. Mroczkowski | K. Moodley | M. Hilton | N. Sehgal | R. Dunner | E. Schaan | S. Amodeo | S. Aiola | D. Becker | R. Bond | Victoria Calafut | Steve K. Choi | S. Duff | P. Gallardo | Dongwon Han | R. Hlovzek | B. Koopman | Amanda Macinnis | M. Madhavacheril | S. Naess | E. Storer | J. Lanen | E. Vavagiakis | K. Hall | E. Moser
[1] Edward J. Wollack,et al. Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos , 2022 .
[2] G. Lavaux,et al. Taking measurements of the kinematic Sunyaev-Zel'dovich effect forward: including uncertainties from velocity reconstruction with forward modeling , 2020, Journal of Cosmology and Astroparticle Physics.
[3] B. M'enard,et al. The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography , 2020, The Astrophysical Journal.
[4] J. Prochaska,et al. A census of baryons in the Universe from localized fast radio bursts , 2020, Nature.
[5] C. Heymans,et al. A hydrodynamical halo model for weak-lensing cross correlations , 2020, Astronomy & Astrophysics.
[6] Edward J. Wollack,et al. Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect , 2020, Physical Review D.
[7] J. Peacock,et al. Erratum: Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations , 2019, Monthly Notices of the Royal Astronomical Society.
[8] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[9] Hong Guo,et al. New perspectives on the BOSS small-scale lensing discrepancy for the Planck ΛCDM cosmology , 2019, Monthly Notices of the Royal Astronomical Society.
[10] J. Schaye,et al. Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra , 2019, Monthly Notices of the Royal Astronomical Society.
[11] Yen-Ting Lin,et al. Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.
[12] D. Gerdes,et al. Constraints on the redshift evolution of astrophysical feedback with Sunyaev-Zel’dovich effect cross-correlations , 2019, Physical Review D.
[13] A. Zitrin,et al. Imaging the Thermal and Kinematic Sunyaev–Zel’dovich Effect Signals in a Sample of 10 Massive Galaxy Clusters: Constraints on Internal Velocity Structures and Bulk Velocities , 2018, The Astrophysical Journal.
[14] R. Kraft,et al. Detection of the Missing Baryons toward the Sightline of H1821+643 , 2018, The Astrophysical Journal.
[15] Kendrick M. Smith,et al. Constraining local non-Gaussianities with kinetic Sunyaev-Zel’dovich tomography , 2018, Physical Review D.
[16] R. Teyssier,et al. Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation , 2018, Journal of Cosmology and Astroparticle Physics.
[17] Edward J. Wollack,et al. The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.
[18] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.
[19] Sean D. Johnson,et al. Characterizing circumgalactic gas around massive ellipticals atz∼ 0.4 – II. Physical properties and elemental abundances , 2018, Monthly Notices of the Royal Astronomical Society.
[20] Ny,et al. Observations of the missing baryons in the warm–hot intergalactic medium , 2018, Nature.
[21] C. B. D'Andrea,et al. Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data , 2017, Monthly Notices of the Royal Astronomical Society.
[22] G. Kauffmann,et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.
[23] Cca,et al. First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.
[24] Adam Lidz,et al. Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity , 2017, 1706.03753.
[25] A. Vikhlinin,et al. Stellar Mass—Halo Mass Relation and Star Formation Efficiency in High-Mass Halos , 2014, Astronomy Letters.
[26] Etienne Pointecouteau,et al. Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich E ff ects A Millimetre / Submillimetre Probe of the Warm and Hot Universe , 2018 .
[27] Molly S. Peeples,et al. The Circumgalactic Medium , 2017, 1709.09180.
[28] D. Spergel,et al. Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements , 2017, 1705.05881.
[29] S. White,et al. The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.
[30] Maria E. S. Pereira,et al. Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.
[31] S. Kaviraj,et al. The Horizon-AGN simulation: evolution of galaxy properties over cosmic time , 2016, 1605.09379.
[32] S. Flender,et al. Constraints on the Optical Depth of Galaxy Groups and Clusters , 2016, 1610.08029.
[33] J. Prochaska,et al. THE COS-HALOS SURVEY: ORIGINS OF THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM OF STAR-FORMING GALAXIES , 2016, 1609.00012.
[34] Adam Lidz,et al. A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function , 2016, 1608.04160.
[35] N. Battaglia. The tau of galaxy clusters , 2016, 1607.02442.
[36] Edward J. Wollack,et al. Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope , 2016, 1607.02139.
[37] S. Maurogordato,et al. Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA , 2016, 1606.07721.
[38] C. A. Oxborrow,et al. Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.
[39] Edward J. Wollack,et al. Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey , 2015, 1510.06442.
[40] J. Frieman,et al. Detection of the kinematic Sunyaev-Zel'dovich effect with DES Year 1 and SPT , 2016, 1603.03904.
[41] D. Spergel,et al. Kinematic Sunyaev-Zel'dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP, and WISE Data. , 2016, Physical review letters.
[42] Andrew P. Hearin,et al. Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes? , 2015, 1509.00482.
[43] C. A. Oxborrow,et al. Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect , 2015, 1504.03339.
[44] Caltech,et al. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.
[45] R. Bean,et al. Constraints on massive neutrinos from the pairwise kinematic Sunyaev-Zel’dovich effect , 2014, 1412.0592.
[46] R. Bean,et al. CONSTRAINTS ON GRAVITY AND DARK ENERGY FROM THE PAIRWISE KINEMATIC SUNYAEV–ZEL’DOVICH EFFECT , 2014, 1408.6248.
[47] S. White,et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.
[48] Scott Dodelson,et al. Accounting for baryonic effects in cosmic shear tomography: determining a minimal set of nuisance parameters using PCA , 2014, 1405.7423.
[49] R. Somerville,et al. Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.
[50] E. Komatsu,et al. Analytical model for non-thermal pressure in galaxy clusters - II. Comparison with cosmological hydrodynamics simulation , 2014, 1408.3832.
[51] M. Lueker,et al. THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.
[52] Daisuke Nagai,et al. HYDRODYNAMIC SIMULATION OF NON-THERMAL PRESSURE PROFILES OF GALAXY CLUSTERS , 2014, 1404.4636.
[53] J. Schaye,et al. Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.
[54] David N. Spergel,et al. Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data , 2013, 1312.4525.
[55] C. A. Oxborrow,et al. Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.
[56] A. Font-Ribera,et al. THE HERSCHEL STRIPE 82 SURVEY (HerS): MAPS AND EARLY CATALOG , 2013, 1308.4399.
[57] D. A. García-Hernández,et al. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.
[58] Judith G. Cohen,et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.
[59] J. Brinkmann,et al. THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.
[60] J. Bock,et al. A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.
[61] Tim D. Higgs,et al. Stellar masses of SDSS-III/BOSS galaxies at z ∼ 0.5 and constraints to galaxy formation models , 2012, 1207.6114.
[62] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[63] G. W. Pratt,et al. Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.
[64] D. Nagai,et al. A fast and accurate method for computing the Sunyaev–Zel'dovich signal of hot galaxy clusters , 2012, 1205.5778.
[65] Edward J. Wollack,et al. Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect. , 2012, Physical review letters.
[66] J. R. Bond,et al. ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM , 2011, 1109.3711.
[67] J. Bond,et al. ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. I. THE INFLUENCE OF FEEDBACK, NON-THERMAL PRESSURE, AND CLUSTER SHAPES ON Y–M SCALING RELATIONS , 2011, 1109.3709.
[68] H. Hoekstra,et al. Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.
[69] Joop Schaye,et al. The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.
[70] M. Becker,et al. ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.
[71] D. Nagai,et al. IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.
[72] J. R. Bond,et al. SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.
[73] S. Maddox,et al. The Herschel ATLAS , 2009, 0910.4279.
[74] S. White,et al. Galaxy Formation and Evolution: Frontmatter , 2010 .
[75] J. Ostriker,et al. EXPLORING THE ENERGETICS OF INTRACLUSTER GAS WITH A SIMPLE AND ACCURATE MODEL , 2009, 0905.3748.
[76] Daisuke Nagai,et al. RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.
[77] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[78] H. Trac,et al. DETECTION OF HOT GAS IN GALAXY GROUPS VIA THE THERMAL SUNYAEV–ZEL'DOVICH EFFECT , 2008, 0809.5172.
[79] Roberto Gilmozzi,et al. Ground-based and Airborne Telescopes VII , 2008 .
[80] S. Kay,et al. Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.
[81] D. Nagai,et al. Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.
[82] L. King,et al. A statistical study of weak lensing by triaxial dark matter haloes: Consequences for parameter estimation , 2006, astro-ph/0611913.
[83] L. Moscardini,et al. Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.
[84] R. Cen,et al. Where Are the Baryons? II. Feedback Effects , 2005, astro-ph/0601008.
[85] S. Nozawa,et al. An improved formula for the relativistic corrections to the kinematical Sunyaev-Zeldovich effect for clusters of galaxies , 2005, astro-ph/0507466.
[86] A. Babul,et al. A Simple and Accurate Model for Intracluster Gas , 2005, astro-ph/0504334.
[87] Potsdam,et al. Supersonic motions of galaxies in clusters , 2004, astro-ph/0408488.
[88] M. Fukugita,et al. The Cosmic Energy Inventory , 2004, astro-ph/0406095.
[89] L. Moscardini,et al. A dynamical model for the distribution of dark matter and gas in galaxy clusters , 2003, astro-ph/0309405.
[90] R. Sheth,et al. Halo Models of Large Scale Structure , 2002, astro-ph/0206508.
[91] R. Sheth,et al. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.
[92] G. Bryan,et al. On the Distribution of X-Ray Surface Brightness from Diffuse Gas , 2001, astro-ph/0101466.
[93] H. Mo,et al. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.
[94] Klaus Meisenheimer,et al. The Radio Galaxy Messier 87 , 1999 .
[95] G. Bryan,et al. Cluster Turbulence , 1998, astro-ph/9802335.
[96] Wayne Hu,et al. Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.
[97] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[98] HongSheng Zhao. Analytical models for galactic nuclei , 1995, astro-ph/9509122.
[99] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[100] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[101] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.