Atacama Cosmology Telescope: Modeling the gas thermodynamics in BOSS CMASS galaxies from kinematic and thermal Sunyaev-Zel’dovich measurements

The thermal and kinematic Sunyaev-Zel'dovich effects (tSZ, kSZ) probe the thermodynamic properties of the circumgalactic and intracluster medium (CGM and ICM) of galaxies, groups, and clusters, since they are proportional, respectively, to the integrated electron pressure and momentum along the line-of-sight. We present constraints on the gas thermodynamics of CMASS galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) using new measurements of the kSZ and tSZ signals obtained in a companion paper. Combining kSZ and tSZ measurements, we measure within our model the amplitude of energy injection $\epsilon M_\star c^2$, where $M_\star$ is the stellar mass, to be $\epsilon=(33^{+2}_{-5})\times10^{-6}$, and the amplitude of the non-thermal pressure profile to be $\alpha_{\rm Nth}=0.30^{+0.06}_{-0.07}$, indicating that 30% of the total pressure within the virial radius is due to a non-thermal component. We estimate the effects of including baryons in the modeling of weak-lensing galaxy cross-correlation measurements using the best fit density profile from the kSZ measurement. Our estimate reduces the difference between the original theoretical model and the weak-lensing galaxy cross-correlation measurements in arXiv:1611.08606 by half (50% at most), but does not fully reconcile it. Comparing the kSZ and tSZ measurements to cosmological simulations, we find that they under predict the CGM pressure and to a lesser extent the CGM density at larger radii. This suggests that the energy injected via feedback models in the simulations that we compared against does not sufficiently heat the gas at these radii. We do not find significant disagreement at smaller radii. These measurements provide novel tests of current and future simulations. This work demonstrates the power of joint, high signal-to-noise kSZ and tSZ observations, upon which future cross-correlation studies will improve.

[1]  Edward J. Wollack,et al.  Telescope: Combined kinematic and thermal Sunyaev-Zel'dovich measurements from BOSS CMASS and LOWZ halos , 2022 .

[2]  G. Lavaux,et al.  Taking measurements of the kinematic Sunyaev-Zel'dovich effect forward: including uncertainties from velocity reconstruction with forward modeling , 2020, Journal of Cosmology and Astroparticle Physics.

[3]  B. M'enard,et al.  The Cosmic Thermal History Probed by Sunyaev–Zeldovich Effect Tomography , 2020, The Astrophysical Journal.

[4]  J. Prochaska,et al.  A census of baryons in the Universe from localized fast radio bursts , 2020, Nature.

[5]  C. Heymans,et al.  A hydrodynamical halo model for weak-lensing cross correlations , 2020, Astronomy & Astrophysics.

[6]  Edward J. Wollack,et al.  Atacama Cosmology Telescope: Component-separated maps of CMB temperature and the thermal Sunyaev-Zel’dovich effect , 2020, Physical Review D.

[7]  J. Peacock,et al.  Erratum: Tomographic measurement of the intergalactic gas pressure through galaxy-tSZ cross-correlations , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[9]  Hong Guo,et al.  New perspectives on the BOSS small-scale lensing discrepancy for the Planck ΛCDM cosmology , 2019, Monthly Notices of the Royal Astronomical Society.

[10]  J. Schaye,et al.  Exploring the effects of galaxy formation on matter clustering through a library of simulation power spectra , 2019, Monthly Notices of the Royal Astronomical Society.

[11]  Yen-Ting Lin,et al.  Second data release of the Hyper Suprime-Cam Subaru Strategic Program , 2019, Publications of the Astronomical Society of Japan.

[12]  D. Gerdes,et al.  Constraints on the redshift evolution of astrophysical feedback with Sunyaev-Zel’dovich effect cross-correlations , 2019, Physical Review D.

[13]  A. Zitrin,et al.  Imaging the Thermal and Kinematic Sunyaev–Zel’dovich Effect Signals in a Sample of 10 Massive Galaxy Clusters: Constraints on Internal Velocity Structures and Bulk Velocities , 2018, The Astrophysical Journal.

[14]  R. Kraft,et al.  Detection of the Missing Baryons toward the Sightline of H1821+643 , 2018, The Astrophysical Journal.

[15]  Kendrick M. Smith,et al.  Constraining local non-Gaussianities with kinetic Sunyaev-Zel’dovich tomography , 2018, Physical Review D.

[16]  R. Teyssier,et al.  Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation , 2018, Journal of Cosmology and Astroparticle Physics.

[17]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[18]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[19]  Sean D. Johnson,et al.  Characterizing circumgalactic gas around massive ellipticals atz∼ 0.4 – II. Physical properties and elemental abundances , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  Ny,et al.  Observations of the missing baryons in the warm–hot intergalactic medium , 2018, Nature.

[21]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data , 2017, Monthly Notices of the Royal Astronomical Society.

[22]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[23]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[24]  Adam Lidz,et al.  Two-halo term in stacked thermal Sunyaev-Zel'dovich measurements: Implications for self-similarity , 2017, 1706.03753.

[25]  A. Vikhlinin,et al.  Stellar Mass—Halo Mass Relation and Star Formation Efficiency in High-Mass Halos , 2014, Astronomy Letters.

[26]  Etienne Pointecouteau,et al.  Astrophysics with the Spatially and Spectrally Resolved Sunyaev-Zeldovich E ff ects A Millimetre / Submillimetre Probe of the Warm and Hot Universe , 2018 .

[27]  Molly S. Peeples,et al.  The Circumgalactic Medium , 2017, 1709.09180.

[28]  D. Spergel,et al.  Future constraints on halo thermodynamics from combined Sunyaev-Zel'dovich measurements , 2017, 1705.05881.

[29]  S. White,et al.  The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies , 2017, 1703.10907.

[30]  Maria E. S. Pereira,et al.  Lensing is Low: Cosmology, Galaxy Formation, or New Physics? , 2016, 1611.08606.

[31]  S. Kaviraj,et al.  The Horizon-AGN simulation: evolution of galaxy properties over cosmic time , 2016, 1605.09379.

[32]  S. Flender,et al.  Constraints on the Optical Depth of Galaxy Groups and Clusters , 2016, 1610.08029.

[33]  J. Prochaska,et al.  THE COS-HALOS SURVEY: ORIGINS OF THE HIGHLY IONIZED CIRCUMGALACTIC MEDIUM OF STAR-FORMING GALAXIES , 2016, 1609.00012.

[34]  Adam Lidz,et al.  A Measurement of the Galaxy Group-Thermal Sunyaev-Zel’dovich Effect Cross-Correlation Function , 2016, 1608.04160.

[35]  N. Battaglia The tau of galaxy clusters , 2016, 1607.02442.

[36]  Edward J. Wollack,et al.  Detection of the pairwise kinematic Sunyaev-Zel'dovich effect with BOSS DR11 and the Atacama Cosmology Telescope , 2016, 1607.02139.

[37]  S. Maurogordato,et al.  Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA , 2016, 1606.07721.

[38]  C. A. Oxborrow,et al.  Planck intermediate results - XLVII. Planck constraints on reionization history , 2016, 1605.03507.

[39]  Edward J. Wollack,et al.  Evidence for the kinematic Sunyaev-Zel'dovich effect with the Atacama Cosmology Telescope and velocity reconstruction from the Baryon Oscillation Spectroscopic Survey , 2015, 1510.06442.

[40]  J. Frieman,et al.  Detection of the kinematic Sunyaev-Zel'dovich effect with DES Year 1 and SPT , 2016, 1603.03904.

[41]  D. Spergel,et al.  Kinematic Sunyaev-Zel'dovich Effect with Projected Fields: A Novel Probe of the Baryon Distribution with Planck, WMAP, and WISE Data. , 2016, Physical review letters.

[42]  Andrew P. Hearin,et al.  Connecting massive galaxies to dark matter haloes in BOSS - I. Is galaxy colour a stochastic process in high-mass haloes? , 2015, 1509.00482.

[43]  C. A. Oxborrow,et al.  Planck intermediate results. XXXVII. Evidence of unbound gas from the kinetic Sunyaev-Zeldovich effect , 2015, 1504.03339.

[44]  Caltech,et al.  The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations , 2015, 1507.02282.

[45]  R. Bean,et al.  Constraints on massive neutrinos from the pairwise kinematic Sunyaev-Zel’dovich effect , 2014, 1412.0592.

[46]  R. Bean,et al.  CONSTRAINTS ON GRAVITY AND DARK ENERGY FROM THE PAIRWISE KINEMATIC SUNYAEV–ZEL’DOVICH EFFECT , 2014, 1408.6248.

[47]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[48]  Scott Dodelson,et al.  Accounting for baryonic effects in cosmic shear tomography: determining a minimal set of nuisance parameters using PCA , 2014, 1405.7423.

[49]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[50]  E. Komatsu,et al.  Analytical model for non-thermal pressure in galaxy clusters - II. Comparison with cosmological hydrodynamics simulation , 2014, 1408.3832.

[51]  M. Lueker,et al.  THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.

[52]  Daisuke Nagai,et al.  HYDRODYNAMIC SIMULATION OF NON-THERMAL PRESSURE PROFILES OF GALAXY CLUSTERS , 2014, 1404.4636.

[53]  J. Schaye,et al.  Towards a realistic population of simulated galaxy groups and clusters , 2013, 1312.5462.

[54]  David N. Spergel,et al.  Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data , 2013, 1312.4525.

[55]  C. A. Oxborrow,et al.  Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation , 2013, 1309.0382.

[56]  A. Font-Ribera,et al.  THE HERSCHEL STRIPE 82 SURVEY (HerS): MAPS AND EARLY CATALOG , 2013, 1308.4399.

[57]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[58]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[59]  J. Brinkmann,et al.  THE WEAK LENSING SIGNAL AND THE CLUSTERING OF BOSS GALAXIES. I. MEASUREMENTS , 2013, 1311.1480.

[60]  J. Bock,et al.  A MEASUREMENT OF THE KINETIC SUNYAEV–ZEL'DOVICH SIGNAL TOWARD MACS J0717.5+3745 , 2013, 1312.3680.

[61]  Tim D. Higgs,et al.  Stellar masses of SDSS-III/BOSS galaxies at z ∼ 0.5 and constraints to galaxy formation models , 2012, 1207.6114.

[62]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[63]  G. W. Pratt,et al.  Planck intermediate results: V. Pressure profiles of galaxy clusters from the Sunyaev-Zeldovich effect , 2012, 1207.4061.

[64]  D. Nagai,et al.  A fast and accurate method for computing the Sunyaev–Zel'dovich signal of hot galaxy clusters , 2012, 1205.5778.

[65]  Edward J. Wollack,et al.  Evidence of galaxy cluster motions with the kinematic Sunyaev-Zel'dovich effect. , 2012, Physical review letters.

[66]  J. R. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM , 2011, 1109.3711.

[67]  J. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. I. THE INFLUENCE OF FEEDBACK, NON-THERMAL PRESSURE, AND CLUSTER SHAPES ON Y–M SCALING RELATIONS , 2011, 1109.3709.

[68]  H. Hoekstra,et al.  Quantifying the effect of baryon physics on weak lensing tomography , 2011, 1105.1075.

[69]  Joop Schaye,et al.  The effects of galaxy formation on the matter power spectrum: a challenge for precision cosmology , 2011, 1104.1174.

[70]  M. Becker,et al.  ON THE ACCURACY OF WEAK-LENSING CLUSTER MASS RECONSTRUCTIONS , 2010, 1011.1681.

[71]  D. Nagai,et al.  IMPACT OF CLUSTER PHYSICS ON THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM , 2010, 1006.1945.

[72]  J. R. Bond,et al.  SIMULATIONS OF THE SUNYAEV–ZEL'DOVICH POWER SPECTRUM WITH ACTIVE GALACTIC NUCLEUS FEEDBACK , 2010, 1003.4256.

[73]  S. Maddox,et al.  The Herschel ATLAS , 2009, 0910.4279.

[74]  S. White,et al.  Galaxy Formation and Evolution: Frontmatter , 2010 .

[75]  J. Ostriker,et al.  EXPLORING THE ENERGETICS OF INTRACLUSTER GAS WITH A SIMPLE AND ACCURATE MODEL , 2009, 0905.3748.

[76]  Daisuke Nagai,et al.  RESIDUAL GAS MOTIONS IN THE INTRACLUSTER MEDIUM AND BIAS IN HYDROSTATIC MEASUREMENTS OF MASS PROFILES OF CLUSTERS , 2009, 0903.4895.

[77]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[78]  H. Trac,et al.  DETECTION OF HOT GAS IN GALAXY GROUPS VIA THE THERMAL SUNYAEV–ZEL'DOVICH EFFECT , 2008, 0809.5172.

[79]  Roberto Gilmozzi,et al.  Ground-based and Airborne Telescopes VII , 2008 .

[80]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[81]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[82]  L. King,et al.  A statistical study of weak lensing by triaxial dark matter haloes: Consequences for parameter estimation , 2006, astro-ph/0611913.

[83]  L. Moscardini,et al.  Systematics in the X-ray cluster mass estimators , 2006, astro-ph/0602434.

[84]  R. Cen,et al.  Where Are the Baryons? II. Feedback Effects , 2005, astro-ph/0601008.

[85]  S. Nozawa,et al.  An improved formula for the relativistic corrections to the kinematical Sunyaev-Zeldovich effect for clusters of galaxies , 2005, astro-ph/0507466.

[86]  A. Babul,et al.  A Simple and Accurate Model for Intracluster Gas , 2005, astro-ph/0504334.

[87]  Potsdam,et al.  Supersonic motions of galaxies in clusters , 2004, astro-ph/0408488.

[88]  M. Fukugita,et al.  The Cosmic Energy Inventory , 2004, astro-ph/0406095.

[89]  L. Moscardini,et al.  A dynamical model for the distribution of dark matter and gas in galaxy clusters , 2003, astro-ph/0309405.

[90]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[91]  R. Sheth,et al.  An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier , 2001, astro-ph/0105113.

[92]  G. Bryan,et al.  On the Distribution of X-Ray Surface Brightness from Diffuse Gas , 2001, astro-ph/0101466.

[93]  H. Mo,et al.  Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes , 1999, astro-ph/9907024.

[94]  Klaus Meisenheimer,et al.  The Radio Galaxy Messier 87 , 1999 .

[95]  G. Bryan,et al.  Cluster Turbulence , 1998, astro-ph/9802335.

[96]  Wayne Hu,et al.  Baryonic Features in the Matter Transfer Function , 1997, astro-ph/9709112.

[97]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[98]  HongSheng Zhao Analytical models for galactic nuclei , 1995, astro-ph/9509122.

[99]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[100]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[101]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.