Three-dimensional metal scaffold supported bicontinuous silicon battery anodes.

Silicon-based lithium ion battery anodes are attracting significant attention because of silicon's exceptionally high lithium capacity. However, silicon's large volume change during cycling generally leads to anode pulverization unless the silicon is dispersed throughout a matrix in nanoparticulate form. Because pulverization results in a loss of electric connectivity, the reversible capacity of most silicon anodes dramatically decays within a few cycles. Here we report a three-dimensional (3D) bicontinuous silicon anode formed by depositing a layer of silicon on the surface of a colloidal crystal templated porous nickel metal scaffold, which maintains electrical connectivity during cycling due to the scaffold. The porous metal framework serves to both impart electrical conductivity to the anode and accommodate the large volume change of silicon upon lithiation and delithiation. The initial capacity of the bicontinuous silicon anode is 3568 (silicon basis) and 1450 mAh g(-1) (including the metal framework) at 0.05C. After 100 cycles at 0.3C, 85% of the capacity remains. Compared to a foil-supported silicon film, the 3D bicontinuous silicon anode exhibits significantly improved mechanical stability and cycleability.

[1]  Yong‐Mook Kang,et al.  Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery , 2010 .

[2]  J. Tarascon,et al.  Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries , 2010 .

[3]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[4]  Xiqian Yu,et al.  Alumina‐Coated Patterned Amorphous Silicon as the Anode for a Lithium‐Ion Battery with High Coulombic Efficiency , 2011, Advanced materials.

[5]  Lin Gu,et al.  Reversible Storage of Lithium in Silver‐Coated Three‐Dimensional Macroporous Silicon , 2010, Advanced materials.

[6]  Ranganath Teki,et al.  Nanostructured silicon anodes for lithium ion rechargeable batteries. , 2009, Small.

[7]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[8]  D. Aurbach,et al.  In Situ Conductivity, Impedance Spectroscopy, and Ex Situ Raman Spectra of Amorphous Silicon during the Insertion/Extraction of Lithium , 2007 .

[9]  T. Takamura,et al.  A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life , 2004 .

[10]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[11]  Geoffrey A. Ozin,et al.  Silicon Inverse‐Opal‐Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries , 2009 .

[12]  Rajeswari Chandrasekaran,et al.  Analysis of Lithium Insertion/Deinsertion in a Silicon Electrode Particle at Room Temperature , 2010 .

[13]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[14]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[15]  A. Stein,et al.  Silica-free syntheses of hierarchically ordered macroporous polymer and carbon monoliths with controllable mesoporosity , 2008 .

[16]  T. Takamura,et al.  High capacity and long cycle life silicon anode for Li-ion battery , 2006 .

[17]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[18]  Chunsheng Wang,et al.  A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery. , 2010, Chemical communications.

[19]  M. Yoshio,et al.  Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations , 2003 .

[20]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[21]  Jaephil Cho,et al.  Porous Si anode materials for lithium rechargeable batteries , 2010 .

[22]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[23]  Jaephil Cho,et al.  Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. , 2008, Nano letters.

[24]  David Wexler,et al.  Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. , 2006, Angewandte Chemie.

[25]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[26]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[27]  Hui Wu,et al.  Engineering empty space between Si nanoparticles for lithium-ion battery anodes. , 2012, Nano letters.

[28]  Wei-Jun Zhang A review of the electrochemical performance of alloy anodes for lithium-ion batteries , 2011 .

[29]  A. Stein,et al.  Synthesis of monolithic 3D ordered macroporous carbon/nano-silicon composites by diiodosilane decomposition , 2008 .

[30]  K. W. Kim,et al.  Surface-modified Si thin film electrode for Li ion batteries (LiFePO4/Si) by cluster-structured Ni under layer , 2009 .

[31]  Jun Chen,et al.  Nest‐like Silicon Nanospheres for High‐Capacity Lithium Storage , 2007 .

[32]  Andreas Stein,et al.  Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon−Carbon Nanocomposites , 2006 .

[33]  Yi Cui,et al.  Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. , 2010, ACS nano.

[34]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[35]  R. Schlögl,et al.  Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. , 2008, Angewandte Chemie.

[36]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[37]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[38]  Ruoxu Lin,et al.  Nickel Nanocone‐Array Supported Silicon Anode for High‐Performance Lithium‐Ion Batteries , 2010, Advanced materials.

[39]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[40]  Jaephil Cho,et al.  A critical size of silicon nano-anodes for lithium rechargeable batteries. , 2010, Angewandte Chemie.

[41]  Robert Furstenberg,et al.  Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals , 2007 .

[42]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[43]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[44]  C. P. Vicente,et al.  On the Use of In-Situ Generated Tin-Based Composite Materials in Lithium-Ion Cells , 2002 .

[45]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).