High-throughput computational screening for solid-state Li-ion conductors
暂无分享,去创建一个
[1] G. Hautier. Finding the needle in the haystack: Materials discovery and design through computational ab initio high-throughput screening , 2019, Computational Materials Science.
[2] Peter Lamp,et al. High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors , 2019, iScience.
[3] Senja Barthel,et al. Automated Multiscale Approach To Predict Self-Diffusion from a Potential Energy Field , 2019, Journal of chemical theory and computation.
[4] Muratahan Aykol,et al. Computational evaluation of new lithium-3 garnets for lithium-ion battery applications as anodes, cathodes, and solid-state electrolytes , 2019, Physical Review Materials.
[5] Boris Kozinsky,et al. Unsupervised landmark analysis for jump detection in molecular dynamics simulations , 2019, Physical Review Materials.
[6] Gowoon Cheon,et al. Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials , 2018, Chemistry of Materials.
[7] Aron Walsh,et al. The 2019 materials by design roadmap , 2018, Journal of physics D: Applied physics.
[8] Ping Liu,et al. Frontiers of solid-state batteries , 2018, MRS Bulletin.
[9] Nicola Marzari,et al. Precision and efficiency in solid-state pseudopotential calculations , 2018, npj Computational Materials.
[10] Aris Marcolongo,et al. Modeling lithium-ion solid-state electrolytes with a pinball model , 2018, Physical Review Materials.
[11] H. Fjellvåg,et al. A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure , 2018 .
[12] O. Delaire,et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics , 2018 .
[13] Yizhou Zhu,et al. Statistical variances of diffusional properties from ab initio molecular dynamics simulations , 2018, npj Computational Materials.
[14] Wolfgang Haselrieder,et al. Current status and challenges for automotive battery production technologies , 2018 .
[15] D. A. D. Corte,et al. Polymorphism in Li4Zn(PO4)2 and Stabilization of its Structural Disorder to Improve Ionic Conductivity , 2018 .
[16] Christian Masquelier,et al. Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.
[17] M. J. van Setten,et al. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..
[18] P. Schwaller,et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.
[19] Prateek Mehta,et al. Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo-Borate Solid Electrolytes , 2017 .
[20] Y. Chiang,et al. Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .
[21] Aris Marcolongo,et al. Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes , 2017 .
[22] Benjamin J Morgan,et al. Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study , 2017, Royal Society Open Science.
[23] Young-Gi Lee,et al. Coatable Li4 SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries. , 2017, ChemSusChem.
[24] Yizhou Zhu,et al. Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.
[25] A. K. Tyagi,et al. Superionic conduction in β-eucryptite: inelastic neutron scattering and computational studies. , 2017, Physical chemistry chemical physics : PCCP.
[26] R. Smith,et al. Crystal structure of Li3Ga(BO3)2 , 2017, Acta crystallographica. Section E, Crystallographic communications.
[27] Arumugam Manthiram,et al. Lithium battery chemistries enabled by solid-state electrolytes , 2017 .
[28] M. Islam,et al. Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. , 2017, ACS applied materials & interfaces.
[29] Ekin D. Cubuk,et al. Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .
[30] Shyue Ping Ong,et al. Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations , 2017 .
[31] Asma Sharafi,et al. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .
[32] M. Wohlfahrt‐Mehrens,et al. Facile Synthesis and Electrochemical Investigation of Li9V3 (P2O7)3(PO4)2 as High Voltage Cathode for Li-Ion Batteries , 2017 .
[33] B. Wood,et al. Role of Dynamically Frustrated Bond Disorder in a Li+ Superionic Solid Electrolyte , 2016 .
[34] Lynden A. Archer,et al. Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.
[35] Jürgen Janek,et al. A solid future for battery development , 2016, Nature Energy.
[36] Sebastian Wenzel,et al. Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12 , 2016 .
[37] Wei Lai,et al. Finite-size effects on the molecular dynamics simulation of fast-ion conductors: A case study of lithium garnet oxide Li7La3Zr2O12 , 2016 .
[38] D. Scanlon,et al. Lithium-ion conductivity in Li6Y(BO3)3: a thermally and electrochemically robust solid electrolyte , 2016 .
[39] Lin-wang Wang,et al. Using Wannier functions to improve solid band gap predictions in density functional theory , 2016, Scientific Reports.
[40] Satoshi Hori,et al. High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.
[41] Ying Shirley Meng,et al. Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study. , 2016, ACS applied materials & interfaces.
[42] Zhihua Yang,et al. Li3AlSiO5: the first aluminosilicate as a potential deep-ultraviolet nonlinear optical crystal with the quaternary diamond-like structure. , 2016, Physical chemistry chemical physics : PCCP.
[43] Saulius Gražulis,et al. COD::CIF::Parser: an error-correcting CIF parser for the Perl language , 2016, Journal of applied crystallography.
[44] Gerbrand Ceder,et al. Interface Stability in Solid-State Batteries , 2016 .
[45] Peter Lamp,et al. Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.
[46] M. Salanne,et al. Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li_{7}La_{3}Zr_{2}O_{12}. , 2015, Physical review letters.
[47] Prateek Mehta,et al. Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes. , 2016, Physical review letters.
[48] Z. Deng,et al. Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations , 2016 .
[49] Ruijuan Xiao,et al. Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations , 2015 .
[50] Yizhou Zhu,et al. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.
[51] S. Ong,et al. Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.
[52] Yang Shen,et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .
[53] Yue Deng,et al. Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.
[54] C. Elsässer,et al. Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study , 2015 .
[55] D. J. Clark,et al. Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4. , 2015, Dalton transactions.
[56] Alex Bates,et al. A review of lithium and non-lithium based solid state batteries , 2015 .
[57] H. Yamane,et al. Synthesis and crystal structure analysis of Li2NaBP2O8 and LiNa2B5P2O14 , 2015 .
[58] Boris Kozinsky,et al. AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.
[59] Daniele Dragoni,et al. Thermoelastic properties of alpha-iron from first-principles , 2015, 1502.01534.
[60] Francois Gygi,et al. Optimization algorithm for the generation of ONCV pseudopotentials , 2015, Comput. Phys. Commun..
[61] A. D. Corso. Pseudopotentials periodic table: From H to Pu , 2014 .
[62] H. Höppe,et al. Further New Borosulfates: Synthesis, Crystal Structure, and Vibrational Spectra of A[B(SO4)2] (A = Na, K, NH4) and the Crystal Structures of Li5[B(SO4)4] and NH4[B(S2O7)2] , 2014 .
[63] Shyue Ping Ong,et al. Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations , 2014 .
[64] R. M. Wentzcovitch,et al. Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu) , 2014, 1408.0863.
[65] Wenqing Zhang,et al. Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis , 2014 .
[66] M. Shikano,et al. Crystal structures of the new fluorophosphates Li9Mg3[PO4]4F3 and Li2Mg[PO4]F and ionic conductivities of selected compositions , 2014 .
[67] Alessandro Curioni,et al. Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations , 2014 .
[68] Chris J Pickard,et al. Density functional theory in the solid state , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[69] N. Ye,et al. Three new alkaline beryllium borates LiBeBO3, Li6Be3B4O12, and Li8Be5B6O18 in the ternary phase diagrams Li2O-BeO-B2O3. , 2014, Inorganic chemistry.
[70] M. Sukhanov,et al. Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4)x(PO4)3 − x , 2014, Inorganic Materials.
[71] H. Yamane,et al. Synthesis, crystal structure and lithium ion conduction of Li3BP2O8. , 2014, Dalton transactions.
[72] D. Vanderbilt,et al. Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.
[73] M. J. Turner,et al. Visualizing lithium-ion migration pathways in battery materials. , 2013, Chemistry.
[74] G. Redhammer,et al. The polar phase of Li2Ge4O9 at 298, 150 and 90 K. , 2013, Acta crystallographica. Section C, Crystal structure communications.
[75] N. Holzwarth,et al. Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .
[76] L. Pastewka,et al. Lithium Chalcogenidotetrelates: LiChT—Synthesis and Characterization of New Li+ Ion Conducting Li/Sn/Se Compounds , 2013 .
[77] Shyue Ping Ong,et al. Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation , 2013 .
[78] Jürgen Köhler,et al. Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .
[79] C. Logemann,et al. Crystal structure of lithium disulfate, Li2[S2O7], Li2O7S2 , 2013 .
[80] H. Höppe,et al. Exploring a new structure family: alkali borosulfates Na5[B(SO4)4], A3[B(SO4)3] (A = K, Rb), Li[B(SO4)2], and Li[B(S2O7)2]. , 2013, Inorganic chemistry.
[81] Marco Buongiorno Nardelli,et al. The high-throughput highway to computational materials design. , 2013, Nature materials.
[82] Toshihiro Kasuga,et al. Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .
[83] Álvaro Vázquez-Mayagoitia,et al. Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations. , 2012, The Journal of chemical physics.
[84] Shyue Ping Ong,et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .
[85] A. Pfitzner,et al. Preparation, Crystal Structure, Electronic Structure, Impedance Spectroscopy, and Raman Spectroscopy of Li3SbS3 and Li3AsS3 , 2012 .
[86] Anubhav Jain,et al. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .
[87] Matthew Sale,et al. Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method , 2012 .
[88] T. Schleid,et al. Li5OCl3 and Li3OCl: Two Remarkably Different Lithium Oxide Chlorides † , 2012 .
[89] Zhihua Yang,et al. synthesis, crystal structure and characterization of a new compound, li3nabab6o12 , 2012 .
[90] Ming Xu,et al. One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor , 2012 .
[91] Jeff Sakamoto,et al. Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .
[92] Kai Feng,et al. Synthesis, structure, and properties of Li2In2MQ6 (M = Si, Ge; Q = S, Se): a new series of IR nonlinear optical materials. , 2012, Inorganic chemistry.
[93] Anubhav Jain,et al. From the computer to the laboratory: materials discovery and design using first-principles calculations , 2012, Journal of Materials Science.
[94] Stefan Adams,et al. Structural requirements for fast lithium ion migration in Li10GeP2S12 , 2012 .
[95] J. C. Schön,et al. Theoretical and experimental exploration of the energy landscape of the quasi-binary cesium chloride/lithium chloride system. , 2012, Chemistry.
[96] Ming Xu,et al. Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .
[97] M. Jansen,et al. Li2B3O4F3, a new lithium-rich fluorooxoborate , 2012 .
[98] Thomas Olsen,et al. Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .
[99] Shyue Ping Ong,et al. First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .
[100] Boris Kozinsky,et al. From order to disorder: The structure of lithium-conducting garnets Li7 − xLa3TaxZr2 − xO12 (x = 0–2) , 2012 .
[101] Peter Moeck,et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..
[102] Stefan Adams,et al. Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .
[103] Freiburg i. Br.,et al. Zeitschrift für anorganische und allgemeine Chemie , 2012 .
[104] Lynden A. Archer,et al. Electrolytes for high-energy lithium batteries , 2012, Applied Nanoscience.
[105] M. Jansen,et al. Li2B6O9F2, a New Acentric Fluorooxoborate , 2011 .
[106] Anubhav Jain,et al. Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .
[107] C. Logemann,et al. The unique bis-(disulfato)-aurate anion [Au(S2O7)2](-): synthesis and characterization of Li[Au(S2O7)2] and Na[Au(S2O7)2)]. , 2011, Inorganic chemistry.
[108] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[109] N. Holzwarth,et al. Computer modeling of lithium phosphate and thiophosphate electrolyte materials , 2011 .
[110] C. Greaves,et al. LiSbO2: synthesis, structure, stability, and lithium-ion conductivity. , 2011, Inorganic chemistry.
[111] Koji Yamada,et al. Lithium ion conduction mechanism in LiInI4 studied by single crystal 7Li NMR , 2011 .
[112] Stefan Grimme,et al. Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..
[113] Piercarlo Mustarelli,et al. Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.
[114] Anubhav Jain,et al. Recharging lithium battery research with first-principles methods , 2011 .
[115] M. Vithal,et al. A wide-ranging review on Nasicon type materials , 2011 .
[116] J. Glaser,et al. An Improved Synthesis of Ternary Carbonates: The Examples LiLa(CO3)2 and La(CO3)F , 2010 .
[117] J. Maier,et al. Li6PO5Br and Li6PO5Cl: The first Lithium-Oxide-Argyrodites , 2010 .
[118] Gerbrand Ceder,et al. Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .
[119] J. Maier,et al. Atomistic characterisation of Li+ mobility and conductivity in Li(7-x)PS(6-x)Ix argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy. , 2010, Chemistry.
[120] J. Cabana,et al. Exploring order–disorder structural transitions in the Li–Nb–N–O system: The new antifluorite oxynitride Li11NbN4O2 , 2010 .
[121] S. Grimme,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.
[122] O. Gün,et al. Lithium argyrodites with phosphorus and arsenic: order and disorder of lithium atoms, crystal chemistry, and phase transitions. , 2010, Chemistry.
[123] J. Goodenough,et al. Challenges for Rechargeable Li Batteries , 2010 .
[124] E. Cussen,et al. Spontaneous formation of crystalline lithium molybdate from solid reagents at room temperature. , 2010, Dalton transactions.
[125] P. Giannozzi,et al. Density-Functional Perturbation Theory for Quasi-Harmonic Calculations , 2010 .
[126] D. V. Drobot,et al. New conducting phase in the Li2O-ZnO-Nb2O5 system: Existence conditions , 2009 .
[127] Philippe Knauth,et al. Inorganic solid Li ion conductors: An overview , 2009 .
[128] V. Caignaert,et al. Topotactic Transformation of the Cationic Conductor Li4Mo5O17 into a Rock Salt Type Oxide Li12Mo5O17 , 2009 .
[129] Stefano de Gironcoli,et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[130] Alejandro Pérez,et al. A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. , 2009, The Journal of chemical physics.
[131] Mohamed Faouzi Zid,et al. Li3Al(MoO2)2O2(AsO4)2 , 2009, Acta crystallographica. Section E, Structure reports online.
[132] Vladislav A. Blatov,et al. Migration maps of Li+ cations in oxygen-containing compounds , 2008 .
[133] V. Rassolov,et al. Crystal growth of two new photoluminescent oxides: Sr3Li6Nb2O11 and Sr3Li6Ta2O11. , 2008, Inorganic chemistry.
[134] Gus L. W. Hart,et al. Algorithm for Generating Derivative Structures , 2008 .
[135] Trilithium scandium bis(orthoborate) , 2008, Acta crystallographica. Section E, Structure reports online.
[136] A. Novoselov,et al. Phase Stability and Ionic Conductivity of Solid Solutions with NASICON Structure , 2008 .
[137] H. Deiseroth,et al. Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.
[138] N. Holzwarth,et al. Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li3PO4 , 2007 .
[139] Venkataraman Thangadurai,et al. Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .
[140] F. Disalvo,et al. Reinvestigation of trilithium phosphide, Li3P , 2007 .
[141] R. Kaindl,et al. Li2Si3O7: Crystal structure and Raman spectroscopy , 2007 .
[142] F. Disalvo,et al. Synthesis and single crystal structures of ternary phosphides Li4SrP2 and AAeP (A=Li, Na; Ae=Sr, Ba) , 2007 .
[143] G. A. Peterson,et al. Crystal structure and phonon properties of noncentrosymmetric LiNaB4O7 , 2007 .
[144] M. Parrinello,et al. Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.
[145] Stefan Grimme,et al. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..
[146] 宓锦校,et al. The layered monodiphosphate Li9Ga3(P2O7) (3)(PO4)(2) refined from X-ray powder data , 2006 .
[147] Venkataraman Thangadurai,et al. Recent progress in solid oxide and lithium ion conducting electrolytes research , 2006 .
[148] T. P. Kumar,et al. Safety mechanisms in lithium-ion batteries , 2006 .
[149] N. Marzari,et al. Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. , 2006, Physical review letters.
[150] J. C. Schön,et al. CMPZ– an algorithm for the efficient comparison of periodic structures , 2006 .
[151] A. K. Tyagi,et al. Syntheses and structures of Li3ScF6 and high pressure LiScF4−, luminescence properties of LiScF4, a new phase in the system LiF–ScF3 , 2005 .
[152] Youting Song,et al. Synthesis and structure of the ternary nitride Li6WN4 , 2005, Powder Diffraction.
[153] Charles W. Monroe,et al. The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .
[154] J. Ibers,et al. Syntheses and structures of six compounds in the A2LiMS4 (A=K, Rb, Cs; M=V, Nb, Ta) family , 2005 .
[155] S. Hull. Superionics: crystal structures and conduction processes , 2004 .
[156] J. Newman,et al. The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .
[157] C. Mühle,et al. New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi). , 2004, Inorganic chemistry.
[158] H. Schnering,et al. Die Lithiumphosphide LiP5 und LiP7 , 1972, Naturwissenschaften.
[159] A. Pfitzner,et al. (LiI)2Li3SbS3: A mixed Alkali Metal Halide Thioantimonate with a novel Tetrahedron Network† , 2004 .
[160] B. Choi,et al. ac conductance of surface layer in lithium tetraborate single crystals , 2003 .
[161] S. Leoni,et al. Li3[ScN2]: the first nitridoscandate(III)-tetrahedral Sc coordination and unusual MX2 framework. , 2003, Chemistry.
[162] Werner Weppner. Engineering of solid state ionic devices , 2003 .
[163] Venkataraman Thangadurai,et al. Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .
[164] M. Yamashita,et al. Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films , 2003 .
[165] C. Ceriani,et al. The role of extra-framework cations on the structure of dehydrated Li-ABW. A computer simulation study , 2003 .
[166] R. Kanno,et al. Structure of the thio-LISICON, Li4GeS4 , 2002 .
[167] G. Ceder,et al. The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.
[168] H. Borrmann,et al. Preparation and Crystal Structure of Li4[TaN3] , 2002 .
[169] Philippe Knauth,et al. Solid‐State Ionics: Roots, Status, and Future Prospects , 2002 .
[170] C. Delmas,et al. On the structure of Li3Ti2(PO4)3 , 2002 .
[171] Gerbrand Ceder,et al. Experimental and Computational Study of the Structure and Electrochemical Properties of LixM2(PO4)3 Compounds with the Monoclinic and Rhombohedral Structure , 2002 .
[172] T. Malcherek. Structure and phase transitions of LiTaOGeO(4). , 2002, Acta crystallographica. Section B, Structural science.
[173] S. Adams,et al. Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses , 2002 .
[174] J. Hanson,et al. Hydrothermal Synthesis of Lithium Zinc Phosphates: Structural Investigation of Twinned α-Li4Zn(PO4)2 and a High Temperature Polymorph β-Li4Zn(PO4)2 , 2002 .
[175] P. Luksch,et al. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.
[176] Gerbrand Ceder,et al. First-principles theory of ionic diffusion with nondilute carriers , 2001 .
[177] Ryoji Kanno,et al. Lithium Ionic Conductor Thio-LISICON: The Li2 S GeS2 P 2 S 5 System , 2001 .
[178] J. Strähle,et al. Li5ReN4, ein Lithium–Nitridorhenat(VII) mit anti‐Flußspat‐Überstruktur , 2000 .
[179] Joonyeong Kim,et al. Synthesis and Structures of New Ternary Aluminum Chalcogenides: LiAlSe2, α-LiAlTe2, and β-LiAlTe2 , 2000 .
[180] Adams,et al. Determining ionic conductivity from structural models of fast ionic conductors , 2000, Physical review letters.
[181] S. J. Kim,et al. Synthesis and single-crystal structure of a lithium aluminogermanate with the zeolite ABW topology , 2000 .
[182] A. Lusis,et al. Structural and conductivity studies in LiFeP2O7, LiScP2O7, and NaScP2O7 , 2000 .
[183] J. Parise,et al. Hydrothermal synthesis and structure of Li4B4Si8O24 , 2000 .
[184] Astronomy,et al. THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999, cond-mat/9903147.
[185] G. Chryssikos,et al. Crystal Structure and Vibrational Spectra of Li2BAlO4 , 1999 .
[186] M. Parrinello,et al. Superionic and metallic states of water and ammonia at giant planet conditions. , 1999, Science.
[187] 山中 高光,et al. Zeitschrift fur Kristallographie誌の編集について , 1998 .
[188] N. Veldman,et al. Mixed Alkali Systems: Structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5 , 1998 .
[189] K. Wakamura. Effects of electronic band on activation energy and of effective charge on lattice distortion in superionic conductors , 1998 .
[190] Y. Laligant,et al. Li6P6O18: X-ray powder structure determination of lithium cyclohexaphosphate , 1998 .
[191] J. Hanson,et al. Hydrothermal synthesis and crystal structure ofα-LiZnAsO4 , 1998 .
[192] J. Klinowski,et al. Phase Transition and Crystal Structures of LiSn2(PO4)3. , 1998 .
[193] A. West,et al. Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .
[194] K. Wakamura. ROLES OF PHONON AMPLITUDE AND LOW-ENERGY OPTICAL PHONONS ON SUPERIONIC CONDUCTION , 1997 .
[195] J. Strähle,et al. Synthese, Eigenschaften und Struktur von LiAuI4 und KAuI4 mit einer Diskussion der kristallchemischen Verwandtschaft zwischen den Halogenoauraten RbAuCl4, AgAuCl4, RbAuBr4 und LiAuI4† , 1997 .
[196] C. Pico,et al. A New Polymorph of Li4P2O7 , 1997 .
[197] H. Meyer,et al. Two‐Dimensional Networks in the Structure of Li2[Nb6Cl16] , 1997 .
[198] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[199] Berend Smit,et al. Understanding molecular simulation: from algorithms to applications , 1996 .
[200] M. Aniya,et al. Phonons and the mechanism of ion transport in some superionic conductors , 1996 .
[201] B. Krebs,et al. NA2B2S5 AND LI2B2S5: TWO NOVEL PERTHIOBORATES WITH PLANAR 1,2,4-TRITHIA-3,5-DIBOROLANE RINGS , 1995 .
[202] M. Jansen,et al. Die Kristallstruktur von Lithiummetaperiodat, LiIO4 , 1995 .
[203] Michele Parrinello,et al. FIRST-PRINCIPLE-CONSTANT PRESSURE MOLECULAR DYNAMICS , 1995 .
[204] A. West,et al. Crystal Structure Refinement of Li4TiO4 Containing Tetrahedrally Coordinated Ti4+ and Tetragonally Packed Oxide Ions , 1994 .
[205] Abdessadek Lachgar,et al. Synthesis, Crystal Structure, and Electronic Structure of In2Li2Nb6Cl18 , 1994 .
[206] Chemie Gegründet. Zeitschrift für anorganische und allgemeine , 1993 .
[207] H. D. Lutz,et al. Kristallstrukturen von Li6MgBr8 und Li2MgBr4/Crystal Structure of Li6MgBr8 and Li2MgBr4 , 1993 .
[208] R. Hoppe,et al. Das erste Diniobat mit ,isolierten' Anionen : KLi4[NbO5] = K2Li8[Nb2O10] , 1993 .
[209] F. Disalvo,et al. Structure of lithium niobium nitride , 1992 .
[210] G. Meyer,et al. Synthese und Kristallstrukturen der Alkali-Tetraiodoindate(III), Alnl4 (A = Li, K, Rb, Cs)† , 1991 .
[211] B. Müller,et al. Darstellung und Struktur der Tetrafluoroaurate(III) MI[AuF4] mit MI = Li, Rb† , 1991 .
[212] R. Hoppe,et al. Ein „Lithosilicat”︁ mit Kolumnareinheiten: RbLi5{Li[SiO4]}2 , 1991 .
[213] Y. C. Huang,et al. Study of Li6Y(BO3)3 :Nd3+ Crystal ‐ A New Laser Crystal , 1991 .
[214] G. Loiacono,et al. Structure of Li4Ge5O12 ― a new compound in the Li2O-GeO2 system , 1990 .
[215] Y. Sadaoka,et al. Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .
[216] S. Sigaryov,et al. Ionic motion in Li3In2(PO4)3 , 1990 .
[217] P. Hartman. A uniform description of phenakite type structures as superstructures ofβ-Si3N4 , 1989 .
[218] Y. Sadaoka,et al. Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .
[219] R. Hoppe,et al. Neues über Oxotellurate(VI) der Alkalimetalle Zur Existenz und Konstitution von Li6TeO6 , 1989 .
[220] V. Kettmann,et al. Structure of dilithium dimagnesium trisulfate , 1988 .
[221] W. Hönle,et al. Preparation, crystal structures, and electronic properties of LiGaCl3 and LiGaI3 , 1988 .
[222] R. Hoppe,et al. Ein Oxid neuen Typs: KLi4[AlO4] , 1988 .
[223] J. Banavar,et al. Computer Simulation of Liquids , 1988 .
[224] S. Kikkawa,et al. High- and low-temperature phases of lithium boron nitride, Li3BN2: Preparation, phase relation, crystal structure, and ionic conductivity , 1987 .
[225] R. Hoppe,et al. Ein neues Oxozincat: Li6[ZnO4] [1] , 1987 .
[226] R. Hoppe,et al. Ein neues oxotellurat, Na4TeO5, und eine revision der struktur von Li4TeO5 , 1987 .
[227] S. Hamdoune,et al. Synthèse et structure cristalline de LiInP2O7 , 1987 .
[228] R. Hoppe,et al. Neue Oxoborate der Alkalimetalle: NaLi2[BO3] [1] , 1987 .
[229] Darstellung und Kristallstrukturen von LiGaCl4 und LiGaI4/ Preparation and Crystal Structure of LiGaCL4 and LiGaI4 , 1987 .
[230] W. Hönle,et al. Darstellung und Kristallstrukturen von LiGaBr4 und LiGaBr3/Preparation and Crystal Structure of LiGaBr4 and LiGaBr3 , 1986 .
[231] W. Hönle,et al. Zur Chemie und Strukturchemie von Phosphiden und Polyphosphiden. 42. Trilithiumheptaphosphid Li3P7: Darstellung, Struktur und Eigenschaften , 1986 .
[232] R. Hoppe,et al. Neue Vertreter der Li8SnO6-Familie: Li8IrO6, Li8PtO6 und Li8CeO6 [1, 2] , 1986 .
[233] R. Hoppe,et al. Notiz über Li2PdO2 , 1986 .
[234] J. Boilot,et al. Fast ion transport in LiZr2(PO4)3: Structure and conductivity , 1986 .
[235] Car,et al. Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.
[236] A. West,et al. Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4 , 1985 .
[237] W. Bronger,et al. Darstellung und kristallstruktur von Li4Re6S11 , 1985 .
[238] R. Hoppe,et al. Zur Kenntnis von KLiZnO2 [1] , 1985 .
[239] A. West,et al. Li+ ion conductivity in the system Li4SiO4Li3VO4 , 1984 .
[240] M. Greenblatt,et al. Ionic conductivity of substituted Li7TaO6 phases , 1984 .
[241] P. Palvadeau,et al. Physical properties of LiAlxFe1−xCl4 ionic conductors , 1983 .
[242] B. Malaman,et al. Synthèse et propriétés de conduction ionique des phases Li8−2xCaxCeO6(0 , 1983 .
[243] G. Meyer,et al. Synthesis and crystal structure of the inter-alkali metal iodide Cs2Li3I5 , 1983 .
[244] Koichiro Nakanishi,et al. Constant temperature molecular dynamics calculation on Lennard‐Jones fluid and its application to watera) , 1983 .
[245] M. Parrinello,et al. Strain fluctuations and elastic constants , 1982 .
[246] P. Hagenmuller,et al. Crystal structure of Li5B7O12.5Cl at 296 and 425 K , 1981 .
[247] G. Mairesse,et al. Lithium tetrakis(chlorosulfato)borate , 1980 .
[248] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature , 1980 .
[249] Heinz Schulz,et al. Neutron scattering study of the one-dimensional ionic conductor β -eucryptite , 1980 .
[250] P. Hagenmuller,et al. Des conducteurs ioniques pseudo-bidimensionnels: Li8MO6 (M = Zr, Sn), Li7LO6 (L = Nb, Ta) et Li6In2O6 , 1979 .
[251] B. Huberman,et al. Superionic conductors: Transitions, structures, dynamics , 1979 .
[252] R. Huggins,et al. Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions , 1977 .
[253] R. D. Shannon,et al. New Li solid electrolytes , 1977 .
[254] A. Rabenau,et al. Ionic conductivity in Li3N single crystals , 1977 .
[255] I. Tordjman,et al. Structures cristallines des polyphosphates de cadmium–lithium et de mercurelithium, CdLi2(PO3)4 et HgLi2(PO3)4 , 1976 .
[256] R. Huggins,et al. Lithium ion conduction in Li5A104, Li5GaO4 and Li6ZnO4 , 1976 .
[257] H. Hong,et al. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .
[258] F. Folger. Die Kristallstruktur von Li2TeO3 , 1975 .
[259] Donald R. Peacor,et al. The crystal structure of Beta eucryptite as a function of temperature , 1973 .
[260] J. Kummer. β-Alumina electrolytes , 1972 .
[261] H. Nowotny,et al. Die Kristallstruktur des Lithium-enneagermanats Li4[Ge9O20] , 1971 .
[262] R. Hoppe,et al. Neue Untersuchungen an Fluorkomplexen mit dreiwertigem Silber und Gold , 1970 .
[263] R. Hoppe,et al. Zur Kristallstruktur von Li3AuO3, Li5AuO4, KAuO2 und RbAuO2 , 1970 .
[264] H. Nowotny,et al. Die Kristallstruktur der Verbindung Li6[Si2O7] , 1969 .
[265] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[266] Aneesur Rahman,et al. Correlations in the Motion of Atoms in Liquid Argon , 1964 .
[267] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[268] B. Alder,et al. Studies in Molecular Dynamics. I. General Method , 1959 .
[269] B. Alder,et al. Phase Transition for a Hard Sphere System , 1957 .
[270] R. Juza,et al. Die ternären Nitride Li3AIN2 und Li3GaN2. 17. Mitteilung über Metallamide und Metallnitride , 1948 .