High-throughput computational screening for solid-state Li-ion conductors

Atomistic simulations are employed to screen experimental structural repositories for fast Li-ion conductors, finding new candidate solid-state electrolyte materials.

[1]  G. Hautier Finding the needle in the haystack: Materials discovery and design through computational ab initio high-throughput screening , 2019, Computational Materials Science.

[2]  Peter Lamp,et al.  High-Throughput Screening of Solid-State Li-Ion Conductors Using Lattice-Dynamics Descriptors , 2019, iScience.

[3]  Senja Barthel,et al.  Automated Multiscale Approach To Predict Self-Diffusion from a Potential Energy Field , 2019, Journal of chemical theory and computation.

[4]  Muratahan Aykol,et al.  Computational evaluation of new lithium-3 garnets for lithium-ion battery applications as anodes, cathodes, and solid-state electrolytes , 2019, Physical Review Materials.

[5]  Boris Kozinsky,et al.  Unsupervised landmark analysis for jump detection in molecular dynamics simulations , 2019, Physical Review Materials.

[6]  Gowoon Cheon,et al.  Machine Learning-Assisted Discovery of Solid Li-Ion Conducting Materials , 2018, Chemistry of Materials.

[7]  Aron Walsh,et al.  The 2019 materials by design roadmap , 2018, Journal of physics D: Applied physics.

[8]  Ping Liu,et al.  Frontiers of solid-state batteries , 2018, MRS Bulletin.

[9]  Nicola Marzari,et al.  Precision and efficiency in solid-state pseudopotential calculations , 2018, npj Computational Materials.

[10]  Aris Marcolongo,et al.  Modeling lithium-ion solid-state electrolytes with a pinball model , 2018, Physical Review Materials.

[11]  H. Fjellvåg,et al.  A first-principle investigation of the Li diffusion mechanism in the super-ionic conductor lithium orthothioborate Li3BS3 structure , 2018 .

[12]  O. Delaire,et al.  Tuning mobility and stability of lithium ion conductors based on lattice dynamics , 2018 .

[13]  Yizhou Zhu,et al.  Statistical variances of diffusional properties from ab initio molecular dynamics simulations , 2018, npj Computational Materials.

[14]  Wolfgang Haselrieder,et al.  Current status and challenges for automotive battery production technologies , 2018 .

[15]  D. A. D. Corte,et al.  Polymorphism in Li4Zn(PO4)2 and Stabilization of its Structural Disorder to Improve Ionic Conductivity , 2018 .

[16]  Christian Masquelier,et al.  Atomic-Scale Influence of Grain Boundaries on Li-Ion Conduction in Solid Electrolytes for All-Solid-State Batteries. , 2018, Journal of the American Chemical Society.

[17]  M. J. van Setten,et al.  The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table , 2017, Comput. Phys. Commun..

[18]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[19]  Prateek Mehta,et al.  Structural, Chemical, and Dynamical Frustration: Origins of Superionic Conductivity in closo-Borate Solid Electrolytes , 2017 .

[20]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[21]  Aris Marcolongo,et al.  Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes , 2017 .

[22]  Benjamin J Morgan,et al.  Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study , 2017, Royal Society Open Science.

[23]  Young-Gi Lee,et al.  Coatable Li4 SnS4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries. , 2017, ChemSusChem.

[24]  Yizhou Zhu,et al.  Origin of fast ion diffusion in super-ionic conductors , 2017, Nature Communications.

[25]  A. K. Tyagi,et al.  Superionic conduction in β-eucryptite: inelastic neutron scattering and computational studies. , 2017, Physical chemistry chemical physics : PCCP.

[26]  R. Smith,et al.  Crystal structure of Li3Ga(BO3)2 , 2017, Acta crystallographica. Section E, Crystallographic communications.

[27]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[28]  M. Islam,et al.  Enhancing the Lithium Ion Conductivity in Lithium Superionic Conductor (LISICON) Solid Electrolytes through a Mixed Polyanion Effect. , 2017, ACS applied materials & interfaces.

[29]  Ekin D. Cubuk,et al.  Holistic computational structure screening of more than 12 000 candidates for solid lithium-ion conductor materials , 2017 .

[30]  Shyue Ping Ong,et al.  Li3Y(PS4)2 and Li5PS4Cl2: New Lithium Superionic Conductors Predicted from Silver Thiophosphates using Efficiently Tiered Ab Initio Molecular Dynamics Simulations , 2017 .

[31]  Asma Sharafi,et al.  Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte , 2017 .

[32]  M. Wohlfahrt‐Mehrens,et al.  Facile Synthesis and Electrochemical Investigation of Li9V3 (P2O7)3(PO4)2 as High Voltage Cathode for Li-Ion Batteries , 2017 .

[33]  B. Wood,et al.  Role of Dynamically Frustrated Bond Disorder in a Li+ Superionic Solid Electrolyte , 2016 .

[34]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[35]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[36]  Sebastian Wenzel,et al.  Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12 , 2016 .

[37]  Wei Lai,et al.  Finite-size effects on the molecular dynamics simulation of fast-ion conductors: A case study of lithium garnet oxide Li7La3Zr2O12 , 2016 .

[38]  D. Scanlon,et al.  Lithium-ion conductivity in Li6Y(BO3)3: a thermally and electrochemically robust solid electrolyte , 2016 .

[39]  Lin-wang Wang,et al.  Using Wannier functions to improve solid band gap predictions in density functional theory , 2016, Scientific Reports.

[40]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[41]  Ying Shirley Meng,et al.  Insights into the Performance Limits of the Li7P3S11 Superionic Conductor: A Combined First-Principles and Experimental Study. , 2016, ACS applied materials & interfaces.

[42]  Zhihua Yang,et al.  Li3AlSiO5: the first aluminosilicate as a potential deep-ultraviolet nonlinear optical crystal with the quaternary diamond-like structure. , 2016, Physical chemistry chemical physics : PCCP.

[43]  Saulius Gražulis,et al.  COD::CIF::Parser: an error-correcting CIF parser for the Perl language , 2016, Journal of applied crystallography.

[44]  Gerbrand Ceder,et al.  Interface Stability in Solid-State Batteries , 2016 .

[45]  Peter Lamp,et al.  Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. , 2015, Chemical reviews.

[46]  M. Salanne,et al.  Sparse Cyclic Excitations Explain the Low Ionic Conductivity of Stoichiometric Li_{7}La_{3}Zr_{2}O_{12}. , 2015, Physical review letters.

[47]  Prateek Mehta,et al.  Effects of Sublattice Symmetry and Frustration on Ionic Transport in Garnet Solid Electrolytes. , 2016, Physical review letters.

[48]  Z. Deng,et al.  Elastic Properties of Alkali Superionic Conductor Electrolytes from First Principles Calculations , 2016 .

[49]  Ruijuan Xiao,et al.  Candidate structures for inorganic lithium solid-state electrolytes identified by high-throughput bond-valence calculations , 2015 .

[50]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[51]  S. Ong,et al.  Design principles for solid-state lithium superionic conductors. , 2015, Nature materials.

[52]  Yang Shen,et al.  Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte , 2015 .

[53]  Yue Deng,et al.  Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. , 2015, Journal of the American Chemical Society.

[54]  C. Elsässer,et al.  Lithium Ion Conduction in LiTi2(PO4)3 and Related Compounds Based on the NASICON Structure: A First-Principles Study , 2015 .

[55]  D. J. Clark,et al.  Infrared nonlinear optical properties of lithium-containing diamond-like semiconductors Li2ZnGeSe4 and Li2ZnSnSe4. , 2015, Dalton transactions.

[56]  Alex Bates,et al.  A review of lithium and non-lithium based solid state batteries , 2015 .

[57]  H. Yamane,et al.  Synthesis and crystal structure analysis of Li2NaBP2O8 and LiNa2B5P2O14 , 2015 .

[58]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[59]  Daniele Dragoni,et al.  Thermoelastic properties of alpha-iron from first-principles , 2015, 1502.01534.

[60]  Francois Gygi,et al.  Optimization algorithm for the generation of ONCV pseudopotentials , 2015, Comput. Phys. Commun..

[61]  A. D. Corso Pseudopotentials periodic table: From H to Pu , 2014 .

[62]  H. Höppe,et al.  Further New Borosulfates: Synthesis, Crystal Structure, and Vibrational Spectra of A[B(SO4)2] (A = Na, K, NH4) and the Crystal Structures of Li5[B(SO4)4] and NH4[B(S2O7)2] , 2014 .

[63]  Shyue Ping Ong,et al.  Insights into Diffusion Mechanisms in P2 Layered Oxide Materials by First-Principles Calculations , 2014 .

[64]  R. M. Wentzcovitch,et al.  Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu) , 2014, 1408.0863.

[65]  Wenqing Zhang,et al.  Structures, Thermodynamics, and Li+ Mobility of Li10GeP2S12: A First-Principles Analysis , 2014 .

[66]  M. Shikano,et al.  Crystal structures of the new fluorophosphates Li9Mg3[PO4]4F3 and Li2Mg[PO4]F and ionic conductivities of selected compositions , 2014 .

[67]  Alessandro Curioni,et al.  Solid-State Electrolytes: Revealing the Mechanisms of Li-Ion Conduction in Tetragonal and Cubic LLZO by First-Principles Calculations , 2014 .

[68]  Chris J Pickard,et al.  Density functional theory in the solid state , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  N. Ye,et al.  Three new alkaline beryllium borates LiBeBO3, Li6Be3B4O12, and Li8Be5B6O18 in the ternary phase diagrams Li2O-BeO-B2O3. , 2014, Inorganic chemistry.

[70]  M. Sukhanov,et al.  Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4)x(PO4)3 − x , 2014, Inorganic Materials.

[71]  H. Yamane,et al.  Synthesis, crystal structure and lithium ion conduction of Li3BP2O8. , 2014, Dalton transactions.

[72]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[73]  M. J. Turner,et al.  Visualizing lithium-ion migration pathways in battery materials. , 2013, Chemistry.

[74]  G. Redhammer,et al.  The polar phase of Li2Ge4O9 at 298, 150 and 90 K. , 2013, Acta crystallographica. Section C, Crystal structure communications.

[75]  N. Holzwarth,et al.  Structures, Li + mobilities, and interfacial properties of solid electrolytes Li 3 PS 4 and Li 3 PO 4 from first principles , 2013 .

[76]  L. Pastewka,et al.  Lithium Chalcogenidotetrelates: LiChT—Synthesis and Characterization of New Li+ Ion Conducting Li/Sn/Se Compounds , 2013 .

[77]  Shyue Ping Ong,et al.  Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x–y(La3–xRbx)(Zr2–yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation , 2013 .

[78]  Jürgen Köhler,et al.  Single-crystal X-ray Structure Analysis of the Superionic Conductor Li 10 Gep 2 S 12 † Pccp Communication , 2022 .

[79]  C. Logemann,et al.  Crystal structure of lithium disulfate, Li2[S2O7], Li2O7S2 , 2013 .

[80]  H. Höppe,et al.  Exploring a new structure family: alkali borosulfates Na5[B(SO4)4], A3[B(SO4)3] (A = K, Rb), Li[B(SO4)2], and Li[B(S2O7)2]. , 2013, Inorganic chemistry.

[81]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[82]  Toshihiro Kasuga,et al.  Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12 , 2013 .

[83]  Álvaro Vázquez-Mayagoitia,et al.  Norm-conserving pseudopotentials with chemical accuracy compared to all-electron calculations. , 2012, The Journal of chemical physics.

[84]  Shyue Ping Ong,et al.  Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors , 2013 .

[85]  A. Pfitzner,et al.  Preparation, Crystal Structure, Electronic Structure, Impedance Spectroscopy, and Raman Spectroscopy of Li3SbS3 and Li3AsS3 , 2012 .

[86]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[87]  Matthew Sale,et al.  Screening of the alkali-metal ion containing materials from the Inorganic Crystal Structure Database (ICSD) for high ionic conductivity pathways using the bond valence method , 2012 .

[88]  T. Schleid,et al.  Li5OCl3 and Li3OCl: Two Remarkably Different Lithium Oxide Chlorides † , 2012 .

[89]  Zhihua Yang,et al.  synthesis, crystal structure and characterization of a new compound, li3nabab6o12 , 2012 .

[90]  Ming Xu,et al.  One-dimensional stringlike cooperative migration of lithium ions in an ultrafast ionic conductor , 2012 .

[91]  Jeff Sakamoto,et al.  Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12 , 2012 .

[92]  Kai Feng,et al.  Synthesis, structure, and properties of Li2In2MQ6 (M = Si, Ge; Q = S, Se): a new series of IR nonlinear optical materials. , 2012, Inorganic chemistry.

[93]  Anubhav Jain,et al.  From the computer to the laboratory: materials discovery and design using first-principles calculations , 2012, Journal of Materials Science.

[94]  Stefan Adams,et al.  Structural requirements for fast lithium ion migration in Li10GeP2S12 , 2012 .

[95]  J. C. Schön,et al.  Theoretical and experimental exploration of the energy landscape of the quasi-binary cesium chloride/lithium chloride system. , 2012, Chemistry.

[96]  Ming Xu,et al.  Mechanisms of Li + transport in garnet-type cubic Li 3+x La 3 M 2 O 12 (M = Te, Nb, Zr) , 2012 .

[97]  M. Jansen,et al.  Li2B3O4F3, a new lithium-rich fluorooxoborate , 2012 .

[98]  Thomas Olsen,et al.  Computational screening of perovskite metal oxides for optimal solar light capture , 2012 .

[99]  Shyue Ping Ong,et al.  First Principles Study of the Li10GeP2S12 Lithium Super Ionic Conductor Material , 2012 .

[100]  Boris Kozinsky,et al.  From order to disorder: The structure of lithium-conducting garnets Li7 − xLa3TaxZr2 − xO12 (x = 0–2) , 2012 .

[101]  Peter Moeck,et al.  Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration , 2011, Nucleic Acids Res..

[102]  Stefan Adams,et al.  Ion transport and phase transition in Li7−xLa3(Zr2−xMx)O12 (M = Ta5+, Nb5+, x = 0, 0.25) , 2012 .

[103]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[104]  Lynden A. Archer,et al.  Electrolytes for high-energy lithium batteries , 2012, Applied Nanoscience.

[105]  M. Jansen,et al.  Li2B6O9F2, a New Acentric Fluorooxoborate , 2011 .

[106]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[107]  C. Logemann,et al.  The unique bis-(disulfato)-aurate anion [Au(S2O7)2](-): synthesis and characterization of Li[Au(S2O7)2] and Na[Au(S2O7)2)]. , 2011, Inorganic chemistry.

[108]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[109]  N. Holzwarth,et al.  Computer modeling of lithium phosphate and thiophosphate electrolyte materials , 2011 .

[110]  C. Greaves,et al.  LiSbO2: synthesis, structure, stability, and lithium-ion conductivity. , 2011, Inorganic chemistry.

[111]  Koji Yamada,et al.  Lithium ion conduction mechanism in LiInI4 studied by single crystal 7Li NMR , 2011 .

[112]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[113]  Piercarlo Mustarelli,et al.  Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. , 2011, Chemical Society reviews.

[114]  Anubhav Jain,et al.  Recharging lithium battery research with first-principles methods , 2011 .

[115]  M. Vithal,et al.  A wide-ranging review on Nasicon type materials , 2011 .

[116]  J. Glaser,et al.  An Improved Synthesis of Ternary Carbonates: The Examples LiLa(CO3)2 and La(CO3)F , 2010 .

[117]  J. Maier,et al.  Li6PO5Br and Li6PO5Cl: The first Lithium-Oxide-Argyrodites , 2010 .

[118]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[119]  J. Maier,et al.  Atomistic characterisation of Li+ mobility and conductivity in Li(7-x)PS(6-x)Ix argyrodites from molecular dynamics simulations, solid-state NMR, and impedance spectroscopy. , 2010, Chemistry.

[120]  J. Cabana,et al.  Exploring order–disorder structural transitions in the Li–Nb–N–O system: The new antifluorite oxynitride Li11NbN4O2 , 2010 .

[121]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[122]  O. Gün,et al.  Lithium argyrodites with phosphorus and arsenic: order and disorder of lithium atoms, crystal chemistry, and phase transitions. , 2010, Chemistry.

[123]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[124]  E. Cussen,et al.  Spontaneous formation of crystalline lithium molybdate from solid reagents at room temperature. , 2010, Dalton transactions.

[125]  P. Giannozzi,et al.  Density-Functional Perturbation Theory for Quasi-Harmonic Calculations , 2010 .

[126]  D. V. Drobot,et al.  New conducting phase in the Li2O-ZnO-Nb2O5 system: Existence conditions , 2009 .

[127]  Philippe Knauth,et al.  Inorganic solid Li ion conductors: An overview , 2009 .

[128]  V. Caignaert,et al.  Topotactic Transformation of the Cationic Conductor Li4Mo5O17 into a Rock Salt Type Oxide Li12Mo5O17 , 2009 .

[129]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[130]  Alejandro Pérez,et al.  A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. , 2009, The Journal of chemical physics.

[131]  Mohamed Faouzi Zid,et al.  Li3Al(MoO2)2O2(AsO4)2 , 2009, Acta crystallographica. Section E, Structure reports online.

[132]  Vladislav A. Blatov,et al.  Migration maps of Li+ cations in oxygen-containing compounds , 2008 .

[133]  V. Rassolov,et al.  Crystal growth of two new photoluminescent oxides: Sr3Li6Nb2O11 and Sr3Li6Ta2O11. , 2008, Inorganic chemistry.

[134]  Gus L. W. Hart,et al.  Algorithm for Generating Derivative Structures , 2008 .

[135]  Trilithium scandium bis(orthoborate) , 2008, Acta crystallographica. Section E, Structure reports online.

[136]  A. Novoselov,et al.  Phase Stability and Ionic Conductivity of Solid Solutions with NASICON Structure , 2008 .

[137]  H. Deiseroth,et al.  Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. , 2008, Angewandte Chemie.

[138]  N. Holzwarth,et al.  Li Ion Diffusion Mechanisms in the Crystalline Electrolyte γ-Li3PO4 , 2007 .

[139]  Venkataraman Thangadurai,et al.  Fast Lithium Ion Conduction in Garnet‐Type Li7La3Zr2O12 , 2007 .

[140]  F. Disalvo,et al.  Reinvestigation of trilithium phosphide, Li3P , 2007 .

[141]  R. Kaindl,et al.  Li2Si3O7: Crystal structure and Raman spectroscopy , 2007 .

[142]  F. Disalvo,et al.  Synthesis and single crystal structures of ternary phosphides Li4SrP2 and AAeP (A=Li, Na; Ae=Sr, Ba) , 2007 .

[143]  G. A. Peterson,et al.  Crystal structure and phonon properties of noncentrosymmetric LiNaB4O7 , 2007 .

[144]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[145]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[146]  宓锦校,et al.  The layered monodiphosphate Li9Ga3(P2O7) (3)(PO4)(2) refined from X-ray powder data , 2006 .

[147]  Venkataraman Thangadurai,et al.  Recent progress in solid oxide and lithium ion conducting electrolytes research , 2006 .

[148]  T. P. Kumar,et al.  Safety mechanisms in lithium-ion batteries , 2006 .

[149]  N. Marzari,et al.  Dynamical structure, bonding, and thermodynamics of the superionic sublattice in alpha-AgI. , 2006, Physical review letters.

[150]  J. C. Schön,et al.  CMPZ– an algorithm for the efficient comparison of periodic structures , 2006 .

[151]  A. K. Tyagi,et al.  Syntheses and structures of Li3ScF6 and high pressure LiScF4−, luminescence properties of LiScF4, a new phase in the system LiF–ScF3 , 2005 .

[152]  Youting Song,et al.  Synthesis and structure of the ternary nitride Li6WN4 , 2005, Powder Diffraction.

[153]  Charles W. Monroe,et al.  The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces , 2005 .

[154]  J. Ibers,et al.  Syntheses and structures of six compounds in the A2LiMS4 (A=K, Rb, Cs; M=V, Nb, Ta) family , 2005 .

[155]  S. Hull Superionics: crystal structures and conduction processes , 2004 .

[156]  J. Newman,et al.  The Effect of Interfacial Deformation on Electrodeposition Kinetics , 2004 .

[157]  C. Mühle,et al.  New insights into the structural and dynamical features of lithium hexaoxometalates Li7MO6 (M = Nb, Ta, Sb, Bi). , 2004, Inorganic chemistry.

[158]  H. Schnering,et al.  Die Lithiumphosphide LiP5 und LiP7 , 1972, Naturwissenschaften.

[159]  A. Pfitzner,et al.  (LiI)2Li3SbS3: A mixed Alkali Metal Halide Thioantimonate with a novel Tetrahedron Network† , 2004 .

[160]  B. Choi,et al.  ac conductance of surface layer in lithium tetraborate single crystals , 2003 .

[161]  S. Leoni,et al.  Li3[ScN2]: the first nitridoscandate(III)-tetrahedral Sc coordination and unusual MX2 framework. , 2003, Chemistry.

[162]  Werner Weppner Engineering of solid state ionic devices , 2003 .

[163]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[164]  M. Yamashita,et al.  Formation and ionic conductivity of Li2S–GeS2–Ga2S3 glasses and thin films , 2003 .

[165]  C. Ceriani,et al.  The role of extra-framework cations on the structure of dehydrated Li-ABW. A computer simulation study , 2003 .

[166]  R. Kanno,et al.  Structure of the thio-LISICON, Li4GeS4 , 2002 .

[167]  G. Ceder,et al.  The Alloy Theoretic Automated Toolkit: A User Guide , 2002, cond-mat/0212159.

[168]  H. Borrmann,et al.  Preparation and Crystal Structure of Li4[TaN3] , 2002 .

[169]  Philippe Knauth,et al.  Solid‐State Ionics: Roots, Status, and Future Prospects , 2002 .

[170]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[171]  Gerbrand Ceder,et al.  Experimental and Computational Study of the Structure and Electrochemical Properties of LixM2(PO4)3 Compounds with the Monoclinic and Rhombohedral Structure , 2002 .

[172]  T. Malcherek Structure and phase transitions of LiTaOGeO(4). , 2002, Acta crystallographica. Section B, Structural science.

[173]  S. Adams,et al.  Bond valence analysis of transport pathways in RMC models of fast ion conducting glasses , 2002 .

[174]  J. Hanson,et al.  Hydrothermal Synthesis of Lithium Zinc Phosphates: Structural Investigation of Twinned α-Li4Zn(PO4)2 and a High Temperature Polymorph β-Li4Zn(PO4)2 , 2002 .

[175]  P. Luksch,et al.  New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. , 2002, Acta crystallographica. Section B, Structural science.

[176]  Gerbrand Ceder,et al.  First-principles theory of ionic diffusion with nondilute carriers , 2001 .

[177]  Ryoji Kanno,et al.  Lithium Ionic Conductor Thio-LISICON: The Li2 S ­ GeS2 ­ P 2 S 5 System , 2001 .

[178]  J. Strähle,et al.  Li5ReN4, ein Lithium–Nitridorhenat(VII) mit anti‐Flußspat‐Überstruktur , 2000 .

[179]  Joonyeong Kim,et al.  Synthesis and Structures of New Ternary Aluminum Chalcogenides: LiAlSe2, α-LiAlTe2, and β-LiAlTe2 , 2000 .

[180]  Adams,et al.  Determining ionic conductivity from structural models of fast ionic conductors , 2000, Physical review letters.

[181]  S. J. Kim,et al.  Synthesis and single-crystal structure of a lithium aluminogermanate with the zeolite ABW topology , 2000 .

[182]  A. Lusis,et al.  Structural and conductivity studies in LiFeP2O7, LiScP2O7, and NaScP2O7 , 2000 .

[183]  J. Parise,et al.  Hydrothermal synthesis and structure of Li4B4Si8O24 , 2000 .

[184]  Astronomy,et al.  THERMAL CONTRACTION AND DISORDERING OF THE AL(110) SURFACE , 1999, cond-mat/9903147.

[185]  G. Chryssikos,et al.  Crystal Structure and Vibrational Spectra of Li2BAlO4 , 1999 .

[186]  M. Parrinello,et al.  Superionic and metallic states of water and ammonia at giant planet conditions. , 1999, Science.

[187]  山中 高光,et al.  Zeitschrift fur Kristallographie誌の編集について , 1998 .

[188]  N. Veldman,et al.  Mixed Alkali Systems: Structure and 29Si MASNMR of Li2Si2O5 and K2Si2O5 , 1998 .

[189]  K. Wakamura Effects of electronic band on activation energy and of effective charge on lattice distortion in superionic conductors , 1998 .

[190]  Y. Laligant,et al.  Li6P6O18: X-ray powder structure determination of lithium cyclohexaphosphate , 1998 .

[191]  J. Hanson,et al.  Hydrothermal synthesis and crystal structure ofα-LiZnAsO4 , 1998 .

[192]  J. Klinowski,et al.  Phase Transition and Crystal Structures of LiSn2(PO4)3. , 1998 .

[193]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[194]  K. Wakamura ROLES OF PHONON AMPLITUDE AND LOW-ENERGY OPTICAL PHONONS ON SUPERIONIC CONDUCTION , 1997 .

[195]  J. Strähle,et al.  Synthese, Eigenschaften und Struktur von LiAuI4 und KAuI4 mit einer Diskussion der kristallchemischen Verwandtschaft zwischen den Halogenoauraten RbAuCl4, AgAuCl4, RbAuBr4 und LiAuI4† , 1997 .

[196]  C. Pico,et al.  A New Polymorph of Li4P2O7 , 1997 .

[197]  H. Meyer,et al.  Two‐Dimensional Networks in the Structure of Li2[Nb6Cl16] , 1997 .

[198]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[199]  Berend Smit,et al.  Understanding molecular simulation: from algorithms to applications , 1996 .

[200]  M. Aniya,et al.  Phonons and the mechanism of ion transport in some superionic conductors , 1996 .

[201]  B. Krebs,et al.  NA2B2S5 AND LI2B2S5: TWO NOVEL PERTHIOBORATES WITH PLANAR 1,2,4-TRITHIA-3,5-DIBOROLANE RINGS , 1995 .

[202]  M. Jansen,et al.  Die Kristallstruktur von Lithiummetaperiodat, LiIO4 , 1995 .

[203]  Michele Parrinello,et al.  FIRST-PRINCIPLE-CONSTANT PRESSURE MOLECULAR DYNAMICS , 1995 .

[204]  A. West,et al.  Crystal Structure Refinement of Li4TiO4 Containing Tetrahedrally Coordinated Ti4+ and Tetragonally Packed Oxide Ions , 1994 .

[205]  Abdessadek Lachgar,et al.  Synthesis, Crystal Structure, and Electronic Structure of In2Li2Nb6Cl18 , 1994 .

[206]  Chemie Gegründet Zeitschrift für anorganische und allgemeine , 1993 .

[207]  H. D. Lutz,et al.  Kristallstrukturen von Li6MgBr8 und Li2MgBr4/Crystal Structure of Li6MgBr8 and Li2MgBr4 , 1993 .

[208]  R. Hoppe,et al.  Das erste Diniobat mit ,isolierten' Anionen : KLi4[NbO5] = K2Li8[Nb2O10] , 1993 .

[209]  F. Disalvo,et al.  Structure of lithium niobium nitride , 1992 .

[210]  G. Meyer,et al.  Synthese und Kristallstrukturen der Alkali-Tetraiodoindate(III), Alnl4 (A = Li, K, Rb, Cs)† , 1991 .

[211]  B. Müller,et al.  Darstellung und Struktur der Tetrafluoroaurate(III) MI[AuF4] mit MI = Li, Rb† , 1991 .

[212]  R. Hoppe,et al.  Ein „Lithosilicat”︁ mit Kolumnareinheiten: RbLi5{Li[SiO4]}2 , 1991 .

[213]  Y. C. Huang,et al.  Study of Li6Y(BO3)3 :Nd3+ Crystal ‐ A New Laser Crystal , 1991 .

[214]  G. Loiacono,et al.  Structure of Li4Ge5O12 ― a new compound in the Li2O-GeO2 system , 1990 .

[215]  Y. Sadaoka,et al.  Ionic Conductivity of Solid Electrolytes Based on Lithium Titanium Phosphate , 1990 .

[216]  S. Sigaryov,et al.  Ionic motion in Li3In2(PO4)3 , 1990 .

[217]  P. Hartman A uniform description of phenakite type structures as superstructures ofβ-Si3N4 , 1989 .

[218]  Y. Sadaoka,et al.  Ionic Conductivity of the Lithium Titanium Phosphate ( Li1 + X M X Ti2 − X ( PO 4 ) 3 , M = Al , Sc , Y , and La ) Systems , 1989 .

[219]  R. Hoppe,et al.  Neues über Oxotellurate(VI) der Alkalimetalle Zur Existenz und Konstitution von Li6TeO6 , 1989 .

[220]  V. Kettmann,et al.  Structure of dilithium dimagnesium trisulfate , 1988 .

[221]  W. Hönle,et al.  Preparation, crystal structures, and electronic properties of LiGaCl3 and LiGaI3 , 1988 .

[222]  R. Hoppe,et al.  Ein Oxid neuen Typs: KLi4[AlO4] , 1988 .

[223]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[224]  S. Kikkawa,et al.  High- and low-temperature phases of lithium boron nitride, Li3BN2: Preparation, phase relation, crystal structure, and ionic conductivity , 1987 .

[225]  R. Hoppe,et al.  Ein neues Oxozincat: Li6[ZnO4] [1] , 1987 .

[226]  R. Hoppe,et al.  Ein neues oxotellurat, Na4TeO5, und eine revision der struktur von Li4TeO5 , 1987 .

[227]  S. Hamdoune,et al.  Synthèse et structure cristalline de LiInP2O7 , 1987 .

[228]  R. Hoppe,et al.  Neue Oxoborate der Alkalimetalle: NaLi2[BO3] [1] , 1987 .

[229]  Darstellung und Kristallstrukturen von LiGaCl4 und LiGaI4/ Preparation and Crystal Structure of LiGaCL4 and LiGaI4 , 1987 .

[230]  W. Hönle,et al.  Darstellung und Kristallstrukturen von LiGaBr4 und LiGaBr3/Preparation and Crystal Structure of LiGaBr4 and LiGaBr3 , 1986 .

[231]  W. Hönle,et al.  Zur Chemie und Strukturchemie von Phosphiden und Polyphosphiden. 42. Trilithiumheptaphosphid Li3P7: Darstellung, Struktur und Eigenschaften , 1986 .

[232]  R. Hoppe,et al.  Neue Vertreter der Li8SnO6-Familie: Li8IrO6, Li8PtO6 und Li8CeO6 [1, 2] , 1986 .

[233]  R. Hoppe,et al.  Notiz über Li2PdO2 , 1986 .

[234]  J. Boilot,et al.  Fast ion transport in LiZr2(PO4)3: Structure and conductivity , 1986 .

[235]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[236]  A. West,et al.  Li+ ion conducting γ solid solutions in the systems Li4XO4-Li3YO4: X=Si, Ge, Ti; Y=P, As, V; Li4XO4-LiZO2: Z=Al, Ga, Cr and Li4GeO4-Li2CaGeO4 , 1985 .

[237]  W. Bronger,et al.  Darstellung und kristallstruktur von Li4Re6S11 , 1985 .

[238]  R. Hoppe,et al.  Zur Kenntnis von KLiZnO2 [1] , 1985 .

[239]  A. West,et al.  Li+ ion conductivity in the system Li4SiO4Li3VO4 , 1984 .

[240]  M. Greenblatt,et al.  Ionic conductivity of substituted Li7TaO6 phases , 1984 .

[241]  P. Palvadeau,et al.  Physical properties of LiAlxFe1−xCl4 ionic conductors , 1983 .

[242]  B. Malaman,et al.  Synthèse et propriétés de conduction ionique des phases Li8−2xCaxCeO6(0 , 1983 .

[243]  G. Meyer,et al.  Synthesis and crystal structure of the inter-alkali metal iodide Cs2Li3I5 , 1983 .

[244]  Koichiro Nakanishi,et al.  Constant temperature molecular dynamics calculation on Lennard‐Jones fluid and its application to watera) , 1983 .

[245]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[246]  P. Hagenmuller,et al.  Crystal structure of Li5B7O12.5Cl at 296 and 425 K , 1981 .

[247]  G. Mairesse,et al.  Lithium tetrakis(chlorosulfato)borate , 1980 .

[248]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[249]  Heinz Schulz,et al.  Neutron scattering study of the one-dimensional ionic conductor β -eucryptite , 1980 .

[250]  P. Hagenmuller,et al.  Des conducteurs ioniques pseudo-bidimensionnels: Li8MO6 (M = Zr, Sn), Li7LO6 (L = Nb, Ta) et Li6In2O6 , 1979 .

[251]  B. Huberman,et al.  Superionic conductors: Transitions, structures, dynamics , 1979 .

[252]  R. Huggins,et al.  Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions , 1977 .

[253]  R. D. Shannon,et al.  New Li solid electrolytes , 1977 .

[254]  A. Rabenau,et al.  Ionic conductivity in Li3N single crystals , 1977 .

[255]  I. Tordjman,et al.  Structures cristallines des polyphosphates de cadmium–lithium et de mercurelithium, CdLi2(PO3)4 et HgLi2(PO3)4 , 1976 .

[256]  R. Huggins,et al.  Lithium ion conduction in Li5A104, Li5GaO4 and Li6ZnO4 , 1976 .

[257]  H. Hong,et al.  Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12☆ , 1976 .

[258]  F. Folger Die Kristallstruktur von Li2TeO3 , 1975 .

[259]  Donald R. Peacor,et al.  The crystal structure of Beta eucryptite as a function of temperature , 1973 .

[260]  J. Kummer β-Alumina electrolytes , 1972 .

[261]  H. Nowotny,et al.  Die Kristallstruktur des Lithium-enneagermanats Li4[Ge9O20] , 1971 .

[262]  R. Hoppe,et al.  Neue Untersuchungen an Fluorkomplexen mit dreiwertigem Silber und Gold , 1970 .

[263]  R. Hoppe,et al.  Zur Kristallstruktur von Li3AuO3, Li5AuO4, KAuO2 und RbAuO2 , 1970 .

[264]  H. Nowotny,et al.  Die Kristallstruktur der Verbindung Li6[Si2O7] , 1969 .

[265]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[266]  Aneesur Rahman,et al.  Correlations in the Motion of Atoms in Liquid Argon , 1964 .

[267]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[268]  B. Alder,et al.  Studies in Molecular Dynamics. I. General Method , 1959 .

[269]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[270]  R. Juza,et al.  Die ternären Nitride Li3AIN2 und Li3GaN2. 17. Mitteilung über Metallamide und Metallnitride , 1948 .