Effects of the Presence of Water Vapour on the Oxidation Behaviour of Low Carbon–Low Silicon Steel in 1 %O2–N2 at 1073 K

[1]  R. Chen,et al.  Short-time Oxidation Behavior of Low-carbon, Low-silicon Steel in Air at 850–1,180 °C—III: Mixed Linear-and-Parabolic to Parabolic Transition Determined Using Local Mass-Transport Theories , 2010 .

[2]  Rex Y. Chen,et al.  Short-Time Oxidation Behavior of Low-Carbon, Low-Silicon Steel in Air at 850–1180 °C: II. Linear to Parabolic Transition Determined Using Existing Gas-Phase Transport and Solid-Phase Diffusion Theories , 2010 .

[3]  Rex Y. Chen,et al.  Oxidation of Low-Carbon Steel in 17H2O-N2 at 900 °C , 2009 .

[4]  D. Young High Temperature Oxidation and Corrosion of Metals , 2008 .

[5]  Rex Y. Chen,et al.  Short-time Oxidation Behavior of Low-carbon, Low-silicon Steel in Air at 850–1,180 °C––I: Oxidation Kinetics , 2008 .

[6]  W. Gao,et al.  Oxide scales on hot-rolled steel strips , 2008 .

[7]  Wei Gao,et al.  Developments in high-temperature corrosion and protection of materials , 2008 .

[8]  Rex Y. Chen,et al.  Oxidation of a Low Carbon, Low Silicon Steel in Air at 600-920°C , 2006 .

[9]  F. Pettit,et al.  Introduction to the high-temperature oxidation of metals , 2006 .

[10]  B. Gleeson,et al.  Scaling of Carbon Steel in Simulated Reheat Furnace Atmospheres , 2005 .

[11]  R. Chen,et al.  Examination of Oxide Scales of Hot Rolled Steel Products , 2005 .

[12]  M. Schütze,et al.  Mechanical Properties of Oxide Scales on Mild Steel at 800 to 1000°C , 2003 .

[13]  R. Chen,et al.  Review of the High-Temperature Oxidation of Iron and Carbon Steels in Air or Oxygen , 2003 .

[14]  N. Ōtsuka,et al.  Deformation of Iron Oxides upon Tensile Tests at 600–1250°C , 2003 .

[15]  R. Chen,et al.  Oxide-Scale Structures Formed on Commercial Hot-Rolled Steel Strip and Their Formation Mechanisms , 2001 .

[16]  R. Chen,et al.  A Study of the Scale Structure of Hot-Rolled Steel Strip by Simulated Coiling and Cooling , 2000 .

[17]  Roderick I. L. Guthrie,et al.  Oxidation of low carbon steel in multicomponent gases: Part II. Reaction mechanisms during reheating , 1997 .

[18]  R. Rapp,et al.  Interfacial scaling reactions and the reactive element effect , 1994 .

[19]  J. Robertson,et al.  Criteria for formation of single layer, duplex, and breakaway scales on steels , 1988 .

[20]  F. Oeters,et al.  A contribution to the scaling of steel in technical flue gases , 1984 .

[21]  E. T. Turkdogan,et al.  Scale growth on steels at 1200°C: rationale of rate and morphology , 1984 .

[22]  M. Ashby,et al.  Fracture surface micro-roughness , 1984 .

[23]  C. T. Fujii,et al.  The Mechanism of the High‐Temperature Oxidation of Iron‐Chromium Alloys in Water Vapor , 1964 .

[24]  C. T. Fujii,et al.  Oxide Structures Produced on Iron‐Chromium Alloys by a Dissociative Mechanism , 1963 .

[25]  F. Wever,et al.  Über einige grundfragen der bildung und der haftung von zunder auf eisen , 1957 .

[26]  C. Birchenall,et al.  Plastic Flow of Iron Oxides And the Oxidation of Iron , 1956 .

[27]  R. Chen,et al.  8 – Oxide scales on hot-rolled steel strips , 2008 .

[28]  J. Young Chapter 10 Effects of Water Vapour on Oxidation , 2008 .

[29]  H. Evans Stress effects in high temperature oxidation of metals , 1995 .

[30]  C. W. Tuck,et al.  The oxidation of iron at 950°C in oxygen/water vapour mixtures , 1969 .

[31]  D. Douglass The role of oxide plasticity on the oxidation behavior of metals: A review , 1969 .

[32]  S. Mrowec On the mechanism of high temperature oxidation of metals and alloys , 1967 .

[33]  A. Rahmel,et al.  Einfluss von wasserdampf und kohlendioxyd auf die oxydation von eisen in sauerstoff bei hohen temperaturen , 1965 .