Source localization with an advanced gravitational wave detector network
暂无分享,去创建一个
[1] Eric Chassande-Mottin,et al. Multimessenger astronomy with the Einstein Telescope , 2010, 1004.1964.
[2] L. Nuttall,et al. Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.
[3] A. Cho. Research facilities. U.S. physicists eye Australia for new site of gravitational-wave detector. , 2010, Science.
[4] Parameter estimation from gravitational waves generated by nonspinning binary black holes with laser interferometers: Beyond the Fisher information , 2010, 1004.4537.
[5] G. M. Harry,et al. Advanced LIGO: the next generation of gravitational wave detectors , 2010 .
[6] K. S. Thorne,et al. Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.
[7] Linqing Wen,et al. Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors , 2010, 1003.2504.
[8] S. Fairhurst,et al. Prospects for joint radio telescope and gravitational-wave searches for astrophysical transients , 2009, 0912.0476.
[9] A. Vecchio,et al. Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.
[10] Los Alamos National Laboratory,et al. BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES , 2009, 0908.3635.
[11] S. Fairhurst. Triangulation of gravitational wave sources with a network of detectors , 2009, 0908.2356.
[12] David Blair,et al. Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .
[13] Oxford,et al. Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.
[14] C. Ott. Probing the core-collapse supernova mechanism with gravitational waves , 2009, 0905.2797.
[15] et al,et al. Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .
[16] Peter Shawhan,et al. LOOC UP: locating and observing optical counterparts to gravitational wave bursts , 2008, 0803.0312.
[17] E. Nakar. Short-hard gamma-ray bursts , 2007, astro-ph/0701748.
[18] N. Leroy,et al. Reconstruction of source location in a network of gravitational wave interferometric detectors , 2006, gr-qc/0609118.
[19] N. Christensen,et al. Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data , 2006, gr-qc/0602067.
[20] J. Alberto Lobo,et al. The Detection of Gravitational Waves , 2002, gr-qc/0202063.
[21] A. Pai,et al. A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2000, gr-qc/0009078.
[22] S. Rowan,et al. THE DETECTION OF GRAVITATIONAL WAVES , 1999 .
[23] C. Caves,et al. The Detection of Gravitational Waves , 1991 .
[24] B. Schutz. Data Processing, analysis, and storage for interferometric antennas , 1991 .
[25] M. Tinto,et al. Near optimal solution to the inverse problem for gravitational-wave bursts. , 1989, Physical review. D, Particles and fields.
[26] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.