Source localization with an advanced gravitational wave detector network

We derive an expression for the accuracy with which sources can be localized using a network of gravitational wave detectors. The result is obtained via triangulation, using timing accuracies at each detector and is applicable to a network with any number of detectors. We use this result to investigate the ability of advanced gravitational wave detector networks to accurately localize signals from compact binary coalescences. We demonstrate that additional detectors can significantly improve localization results and illustrate our findings with networks comprised of the advanced LIGO, advanced Virgo and LCGT. In addition, we evaluate the benefits of relocating one of the advanced LIGO detectors to Australia.

[1]  Eric Chassande-Mottin,et al.  Multimessenger astronomy with the Einstein Telescope , 2010, 1004.1964.

[2]  L. Nuttall,et al.  Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.

[3]  A. Cho Research facilities. U.S. physicists eye Australia for new site of gravitational-wave detector. , 2010, Science.

[4]  Parameter estimation from gravitational waves generated by nonspinning binary black holes with laser interferometers: Beyond the Fisher information , 2010, 1004.4537.

[5]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[6]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[7]  Linqing Wen,et al.  Geometrical Expression for the Angular Resolution of a Network of Gravitational-Wave Detectors , 2010, 1003.2504.

[8]  S. Fairhurst,et al.  Prospects for joint radio telescope and gravitational-wave searches for astrophysical transients , 2009, 0912.0476.

[9]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[10]  Los Alamos National Laboratory,et al.  BINARY COMPACT OBJECT COALESCENCE RATES: THE ROLE OF ELLIPTICAL GALAXIES , 2009, 0908.3635.

[11]  S. Fairhurst Triangulation of gravitational wave sources with a network of detectors , 2009, 0908.2356.

[12]  David Blair,et al.  Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .

[13]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[14]  C. Ott Probing the core-collapse supernova mechanism with gravitational waves , 2009, 0905.2797.

[15]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[16]  Peter Shawhan,et al.  LOOC UP: locating and observing optical counterparts to gravitational wave bursts , 2008, 0803.0312.

[17]  E. Nakar Short-hard gamma-ray bursts , 2007, astro-ph/0701748.

[18]  N. Leroy,et al.  Reconstruction of source location in a network of gravitational wave interferometric detectors , 2006, gr-qc/0609118.

[19]  N. Christensen,et al.  Bayesian inference on compact binary inspiral gravitational radiation signals in interferometric data , 2006, gr-qc/0602067.

[20]  J. Alberto Lobo,et al.  The Detection of Gravitational Waves , 2002, gr-qc/0202063.

[21]  A. Pai,et al.  A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2000, gr-qc/0009078.

[22]  S. Rowan,et al.  THE DETECTION OF GRAVITATIONAL WAVES , 1999 .

[23]  C. Caves,et al.  The Detection of Gravitational Waves , 1991 .

[24]  B. Schutz Data Processing, analysis, and storage for interferometric antennas , 1991 .

[25]  M. Tinto,et al.  Near optimal solution to the inverse problem for gravitational-wave bursts. , 1989, Physical review. D, Particles and fields.

[26]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.