Operational Monitoring of the Desert Locust Habitat with Earth Observation: An Assessment

Desert locust swarms intermittently damage crops and pastures in sixty countries from Africa to western Asia, threatening the food security of 10% of the world’s population. During the 20th century, desert locust control operations began organizing, and nowadays, they are coordinated by the Food and Agriculture Organization (FAO), which promotes a preventative strategy based on early warning and rapid response. This strategy implies a constant monitoring of the populations and of the ecological conditions favorable to their development. Satellite remote sensing can provide a near real-time monitoring of these conditions at the continental scale. Thus, the desert locust control community needs a reliable detection of green vegetation in arid and semi-arid areas as an indicator of potential desert locust habitat. To meet this need, a colorimetric transformation has been developed on both SPOT-VEGETATION and MODIS data to produce dynamic greenness maps. After their integration in the daily locust control activities, this research aimed at assessing those dynamic greenness maps from the producers’ and the users’ points of view. Eight confusion matrices and Pareto boundaries were derived from high resolution reference maps representative of the temporal and spatial diversity of Mauritanian habitats. The dynamic greenness maps were found to be accurate in summer breeding areas (F-score = 0.64–0.87), but accuracy dropped in winter breeding areas (F-score = 0.28–0.40). Accuracy is related to landscape fragmentation (R2 = 0.9): the current spatial resolution remains too coarse to resolve complex fragmented patterns and accounts for a substantial (60%) part of the error. The exploitation of PROBA-V 100-m images at the finest resolution (100-m) would enhance by 20% the vegetation detection in fragmented habitat. A survey revealed that end-users are satisfied with the product and find it fit for monitoring, thanks to an intuitive interpretation, leading to more efficiency.

[1]  Stephen V. Stehman,et al.  Selecting and interpreting measures of thematic classification accuracy , 1997 .

[2]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[3]  M. Zweig,et al.  Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. , 1993, Clinical chemistry.

[4]  G. H. Rosenfield,et al.  A coefficient of agreement as a measure of thematic classification accuracy. , 1986 .

[5]  Michel Lecoq,et al.  La surveillance des sauteriaux du Sahel , 1988 .

[6]  P. Ceccato,et al.  Operational Early Warning System Using SPOT-VEGETATION and TERRA-MODIS to Predict Desert Locust Outbreaks , 2005 .

[7]  H. Bauer,et al.  The Statistical Analysis of Chaparral and Other Plant Communities by Means of Transect Samples , 1943 .

[8]  G. B. Popov,et al.  Ecological Studies On Oviposition By Swarms Of The Desert Locust (Schistocerca Gregaria Forskal) In Eastern Africa. , 1958 .

[9]  Christelle Vancutsem,et al.  Development and Application of Multi-Temporal Colorimetric Transformation to Monitor Vegetation in the Desert Locust Habitat , 2011, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[10]  Peter Kareiva,et al.  Spatial ecology : the role of space in population dynamics and interspecific interactions , 1998 .

[11]  G. B. Popov,et al.  Etude écologique des biotopes du criquet pèlerin Schistocerca gregaria (Forskal, 1775) en Afrique Nord-Occidentale : mise en évidence et description des unités territoriales écologiquement homogènes. , 1991 .

[12]  R. T. Wilson,et al.  Age and sex composition of small ruminants at Nouakchott markets, Mauritania , 1996 .

[13]  Soraya Villalba Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions.David Tilman , Peter Kareiva , 1998 .

[14]  Mohamed Abdallahi Ould Babah,et al.  Linking Locust Gregarization to Local Resource Distribution Patterns Across a Large Spatial Scale , 2004 .

[15]  Stephen J. Simpson,et al.  The influence of environmental microstructure on the behavioural phase state and distribution of the desert locust Schistocerca gregaria , 1996 .

[16]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .

[17]  Kevin McGarigal,et al.  Surface metrics: an alternative to patch metrics for the quantification of landscape structure , 2009, Landscape Ecology.

[18]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[19]  David L. Buckner Point-intercept sampling in revegetation studies: maximizing objectivity and repeatability , 1985 .

[20]  J. Nianga,et al.  Fifty years of landscape evolution in Southwestern Mauritania by means of aerial photos , 2007 .

[21]  Compton J. Tucker,et al.  Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data , 1986 .

[22]  H. Eva,et al.  Remote Sensing of Biomass Burning in Tropical Regions: Sampling Issues and Multisensor Approach , 1998 .

[23]  JEREMY ROFFEY,et al.  Environmental and Behavioural Processes in a Desert Locust Outbreak , 1968, Nature.

[24]  E. Despland,et al.  Landscape structure and locust swarming: a satellite's eye view , 2004 .

[25]  R. Congalton A Quantitative Method to Test for Consistency and Correctness in Photointerpretation , 1983 .

[26]  Yeneneh T. Belayneh,et al.  Acridid pest management in the developing world: a challenge to the rural population, a dilemma to the international community , 2005 .

[27]  E. Despland Fractal index captures the role of vegetation clumping in locust swarming , 2003 .

[28]  Ian Witten,et al.  Data Mining , 2000 .

[29]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[30]  G. GRAY TAPPAN,et al.  Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology , 1991, Int. J. Geogr. Inf. Sci..

[31]  Mohamed Babah,et al.  Biogéographie du criquet pèlerin en Mauritanie. Fonctionnement d'une aire grégarigène et conséquences sur l'organisation de la surveillance et de la lutte anti-acridienne. Restructuration et analyse des archives anti-acridiennes de Mauritanie , 2001 .

[32]  L. V. Bennett,et al.  The development and termination of the 1968 plague of the desert locust, Schistocerca gregaria (Forskål) (Orthoptera, Acrididae) , 1976 .

[33]  I. Noy-Meir,et al.  Desert Ecosystems: Environment and Producers , 1973 .

[34]  J. Kennedy,et al.  THE BEHAVIOUR OF THE DESERT LOCUST (SCHISTOCERCA GREGARIA (FORSK.)) (ORTHOPT.) IN AN OUTBREAK CENTRE , 2009 .

[35]  H. Yasuda,et al.  Characteristics of precipitation in northern Mauritania and its links with sea surface temperature , 2008 .

[36]  S. J. Simpson,et al.  The role of food distribution and nutritional quality in behavioural phase change in the desert locust , 2000, Animal Behaviour.

[37]  Danny Lo Seen,et al.  Crop area mapping in West Africa using landscape stratification of MODIS time series and comparison with existing global land products , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[38]  W. Youden,et al.  Index for rating diagnostic tests , 1950, Cancer.

[39]  Nikos Koutsias,et al.  Comparing ten classification methods for burned area mapping in a Mediterranean environment using Landsat TM satellite data , 2012 .

[40]  D C Krakauer,et al.  Spatial scales of desert locust gregarization. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Pierre Ozer,et al.  Les lithométéores en région sahélienne: un indicateur climatique de la désertification , 2000 .

[42]  Eric F. Lambin,et al.  Estimation of tropical forest area from coarse spatial resolution data: A two-step correction function for proportional errors due to spatial aggregation , 1995 .

[43]  J. B. Williams,et al.  Satellite Environmental Monitoring for Migrant Pest Forecasting by FAO: The ARTEMIS System [and Discussion] , 1990 .

[44]  P. Vitousek,et al.  The Effects of Plant Composition and Diversity on Ecosystem Processes , 1997 .

[45]  Matthew Collett,et al.  Small‐scale processes in desert locust swarm formation: how vegetation patterns influence gregarization , 2000 .

[46]  Hocine Cherifi,et al.  Accuracy Measures for the Comparison of Classifiers , 2012, ICIT 2012.

[47]  Heike Culmsee,et al.  The habitat functions of vegetation in relation to the behaviour of the desert locust Schistocerca gregaria (Forskål) (Acrididae: Orthoptera) - a study in Mauritania (West Africa) , 2002 .

[48]  Anna Rampini,et al.  Comparing the performance of fuzzy and crisp classifiers on remotely sensed images: a case of snow classification , 2010 .

[49]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[50]  Pierre Defourny,et al.  A Dynamic Vegetation Senescence Indicator for Near-Real-Time Desert Locust Habitat Monitoring with MODIS , 2015, Remote. Sens..

[51]  Michel Lecoq,et al.  Phase polyphenism and preventative locust management. , 2010, Journal of insect physiology.

[52]  Christelle Vancutsem,et al.  Mean Compositing, an alternative strategy for producing temporal syntheses. Concepts and performance assessment for SPOT VEGETATION time series , 2007 .

[53]  S. Tarantola,et al.  Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1 - Theoretical approach , 2002 .

[54]  Stephen J. Simpson,et al.  Small‐scale vegetation patterns in the parental environment influence the phase state of hatchlings of the desert locust , 2000 .

[55]  A. Thiam,et al.  The causes and spatial pattern of land degradation risk in southern Mauritania using multitemporal AVHRR‐NDVI imagery and field data , 2003 .

[56]  G. McIntyre,et al.  Estimation of Plant Density Using Line Transects , 1953 .

[57]  William A. Gale,et al.  A sequential algorithm for training text classifiers , 1994, SIGIR '94.

[58]  Garik Gutman,et al.  On the use of long‐term global data of land reflectances and vegetation indices derived from the advanced very high resolution radiometer , 1999 .

[59]  Babah Ebbe,et al.  Biogéographie du criquet pèlerin Schistocerca gregaria Forskal, 1775 : identification, caractérisation, originalité d'un foyer grégarigène en Mauritanie centrale , 2008 .

[60]  S I Hay,et al.  Remote sensing and disease control: past, present and future. , 1997, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[61]  S. Flasse,et al.  Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary , 2004 .

[62]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .