Regulation of interneuron excitability by gap junction coupling with principal cells

[1]  Luke T. Coddington,et al.  Spillover-Mediated Feedforward Inhibition Functionally Segregates Interneuron Activity , 2013, Neuron.

[2]  L. Trussell,et al.  Rapid, Activity-Independent Turnover of Vesicular Transmitter Content at a Mixed Glycine/GABA Synapse , 2013, The Journal of Neuroscience.

[3]  T. Otis,et al.  Effects of Climbing Fiber Driven Inhibition on Purkinje Neuron Spiking , 2012, The Journal of Neuroscience.

[4]  B. Doiron,et al.  Diverse levels of an inwardly rectifying potassium conductance generate heterogeneous neuronal behavior in a population of dorsal cochlear nucleus pyramidal neurons. , 2012, Journal of neurophysiology.

[5]  R. Silver,et al.  Gap Junctions Compensate for Sublinear Dendritic Integration in an Inhibitory Network , 2012, Science.

[6]  Stephan D. Brenowitz,et al.  Single-neuron recordings from unanesthetized mouse dorsal cochlear nucleus. , 2012, Journal of neurophysiology.

[7]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[8]  Nathaniel B Sawtell,et al.  Neural mechanisms for filtering self-generated sensory signals in cerebellum-like circuits , 2011, Current Opinion in Neurobiology.

[9]  G. Feng,et al.  Cell type–specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function , 2011, Nature Methods.

[10]  L. Trussell,et al.  Spontaneous Spiking and Synaptic Depression Underlie Noradrenergic Control of Feed-Forward Inhibition , 2011, Neuron.

[11]  Kevin J. Bender,et al.  Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation , 2010, Neuron.

[12]  L. Trussell,et al.  Molecular layer inhibitory interneurons provide feedforward and lateral inhibition in the dorsal cochlear nucleus. , 2010, Journal of neurophysiology.

[13]  R. Silver,et al.  Rapid Desynchronization of an Electrically Coupled Interneuron Network with Sparse Excitatory Synaptic Input , 2010, Neuron.

[14]  D. Oliver,et al.  Origins of Glutamatergic Terminals in the Inferior Colliculus Identified by Retrograde Transport and Expression of VGLUT1 and VGLUT2 Genes , 2010, Neuroscience Research.

[15]  O. Kiehn,et al.  Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion , 2010, Nature Neuroscience.

[16]  G. Westbrook,et al.  Experience-dependent maturation of the glomerular microcircuit , 2009, Proceedings of the National Academy of Sciences.

[17]  Nicolas Brunel,et al.  Electrical Coupling Mediates Tunable Low-Frequency Oscillations and Resonance in the Cerebellar Golgi Cell Network , 2009, Neuron.

[18]  N. Sawtell,et al.  Cerebellum-like structures and their implications for cerebellar function. , 2008, Annual review of neuroscience.

[19]  Nathaniel B Sawtell,et al.  Transformations of Electrosensory Encoding Associated with an Adaptive Filter , 2008, The Journal of Neuroscience.

[20]  Boris Barbour,et al.  Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover , 2007, Nature Neuroscience.

[21]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[22]  Chris I. De Zeeuw,et al.  αCaMKII Is Essential for Cerebellar LTD and Motor Learning , 2006, Neuron.

[23]  S. Hestrin,et al.  Electrical synapses define networks of neocortical GABAergic neurons , 2005, Trends in Neurosciences.

[24]  M. Rubio Differential distribution of synaptic endings containing glutamate, glycine, and GABA in the rat dorsal cochlear nucleus , 2004, The Journal of comparative neurology.

[25]  L. Trussell,et al.  Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus , 2004, Nature Neuroscience.

[26]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[27]  Eric D. Young,et al.  What's a cerebellar circuit doing in the auditory system? , 2004, Trends in Neurosciences.

[28]  E. Bamberg,et al.  Channelrhodopsin-2, a directly light-gated cation-selective membrane channel , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[30]  P. Manis,et al.  Dendritic Ca2+ transients evoked by action potentials in rat dorsal cochlear nucleus pyramidal and cartwheel neurons. , 2003, Journal of neurophysiology.

[31]  Y. Yarom,et al.  Electrotonic coupling in the inferior olivary nucleus revealed by simultaneous double patch recordings. , 2002, Journal of neurophysiology.

[32]  H. Voigt,et al.  Intracellularly labeled fusiform cells in dorsal cochlear nucleus of the gerbil. I. Physiological response properties. , 2002, Journal of neurophysiology.

[33]  V. Han,et al.  Reversible Associative Depression and Nonassociative Potentiation at a Parallel Fiber Synapse , 2000, Neuron.

[34]  K. A. Davis,et al.  Pharmacological evidence of inhibitory and disinhibitory neuronal circuits in dorsal cochlear nucleus. , 2000, Journal of neurophysiology.

[35]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[36]  Y Yarom,et al.  Electrotonic Coupling Interacts with Intrinsic Properties to Generate Synchronized Activity in Cerebellar Networks of Inhibitory Interneurons , 1999, The Journal of Neuroscience.

[37]  K. Grant,et al.  Physiology and Plasticity of Morphologically Identified Cells in the Mormyrid Electrosensory Lobe , 1997, The Journal of Neuroscience.

[38]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[39]  S. Zhang,et al.  Neuronal circuits associated with the output of the dorsal cochlear nucleus through fusiform cells. , 1994, Journal of neurophysiology.

[40]  M. Christie,et al.  Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  P. Somogyi,et al.  Colocalization of glycine-like and GABA-like immunoreactivities in Golgi cell terminals in the rat cerebellum: a postembedding light and electron microscopic study , 1988, Brain Research.

[42]  M. Merchán,et al.  Distribution of primary afferent fibres in the cochlear nuclei. A silver and horseradish peroxidase (HRP) study. , 1985, Journal of anatomy.

[43]  E. Mugnaini GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: Light and electron microscopic immunocytochemistry , 1985, The Journal of comparative neurology.

[44]  K K Osen,et al.  Stellate neurons in rat dorsal cochlear nucleus studied with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions , 1984, Journal of neurocytology.

[45]  W. S. Rhode,et al.  Physiological response properties of cells labeled intracellularly with horseradish peroxidase in cat dorsal cochlear nucleus , 1983, The Journal of comparative neurology.

[46]  M. Bennett,et al.  PHYSIOLOGY OF ELECTROTONIC JUNCTIONS * , 1966, Annals of the New York Academy of Sciences.

[47]  P. Dean,et al.  The cerebellar microcircuit as an adaptive filter: experimental and computational evidence , 2010, Nature Reviews Neuroscience.

[48]  B. Connors,et al.  Functional Properties of Electrical Synapses between Inhibitory Interneurons of Neocortical Layer 4 , 2022 .