Dissociation of MgSiO3 in the Cores of Gas Giants and Terrestrial Exoplanets

CaIrO3-type MgSiO3 is the planet-forming silicate stable at pressures and temperatures beyond those of Earth's core-mantle boundary. First-principles quasiharmonic free-energy computations show that this mineral should dissociate into CsCl-type MgO cotunnite-type SiO2 at pressures and temperatures expected to occur in the cores of the gas giants + and in terrestrial exoplanets. At ∼10 megabars and ∼10,000 kelvin, cotunnite-type SiO2 should have thermally activated electron carriers and thus electrical conductivity close to metallic values. Electrons will give a large contribution to thermal conductivity, and electronic damping will suppress radiative heat transport.

[1]  S. Ono,et al.  Post-stishovite phase boundary in SiO2 determined by in situ X-ray observations , 2002 .

[2]  B. Hyde,et al.  Inorganic Crystal Structures , 1989 .

[3]  M. A. Winkler,et al.  Sound speed and thermophysical properties of liquid iron and nickel. , 1990, Physical review. B, Condensed matter.

[4]  J. Tsuchiya,et al.  Phase transition in MgSiO 3 perovskite in the earth's lower mantle , 2004 .

[5]  R. Ahuja,et al.  Experimental and theoretical identification of a new high-pressure TiO2 polymorph. , 2001, Physical review letters.

[6]  M. Gillan,et al.  Structural stability of silica at high pressures and temperatures , 2005 .

[7]  Y. Ohishi,et al.  Post-Perovskite Phase Transition in MgSiO3 , 2004, Science.

[8]  A. Oganov,et al.  Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer , 2004, Nature.

[9]  S. Weinstein The effects of a deep mantle endothermic phase change on the structure of thermal convection in silicate planets , 1995 .

[10]  Artem R. Oganov,et al.  Ab initio lattice dynamics and structural stability of MgO , 2003 .

[11]  Stefano de Gironcoli,et al.  First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions , 1999, Science.

[12]  H. Lipson Crystal Structures , 1949, Nature.

[13]  J. Crain,et al.  Ab initio studies of high-pressure structural transformations in silica , 1997 .

[14]  S. Ono,et al.  Stability of CaCl2‐type and α‐PbO2‐type SiO2 at high pressure and temperature determined by in‐situ X‐ray measurements , 2003 .

[15]  J. Ziman,et al.  In: Electrons and Phonons , 1961 .

[16]  J. Tsuchiya,et al.  First principles determination of the phase boundaries of high‐pressure polymorphs of silica , 2004 .

[17]  H. Mao,et al.  Octahedral tilting evolution and phase transition in orthorhombic NaMgF3 perovskite under pressure , 2005 .

[18]  B. R. Patton Solid State Physics: Solid State Physics , 2001 .

[19]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[20]  Roger G. Williams,et al.  Self-Trapped Excitons , 1993 .

[21]  P. Tackley On the penetration of an endothermic phase transition by upwellings and downwellings , 1995 .

[22]  Ray H. Baughman,et al.  Supporting Online Material , 2003 .

[23]  The N2K Consortium. II. A Transiting Hot Saturn around HD 149026 with a Large Dense Core , 2005, astro-ph/0507009.

[24]  J. Lissauer,et al.  A ~7.5 M⊕ Planet Orbiting the Nearby Star, GJ 876* , 2005, astro-ph/0510508.

[25]  A. Navrotsky Lower mantle phase transitions may generally have negative pressure-temperature slopes , 1980 .

[26]  F. Blatt,et al.  Physics of Electronic conduction in Solids , 1968 .

[27]  Philip B. Allen,et al.  Theory of the temperature dependence of electronic band structures , 1976 .

[28]  Martin J. Siegert,et al.  EOS Trans. AGU , 2003 .

[29]  Y. Ohishi,et al.  The Pyrite-Type High-Pressure Form of Silica , 2005, Science.

[30]  Karl Sabbagh The Riemann hypothesis : the greatest unsolved problem in mathematics , 2004 .