Stabilized explicit Runge-Kutta methods for multi-asset American options
暂无分享,去创建一个
Abdul-Qayyum M. Khaliq | J. Martín-Vaquero | Britta Kleefeld | A. Khaliq | J. Martín-Vaquero | B. Kleefeld
[1] Desmond J. Higham,et al. Analysis of stepsize selection schemes for Runge-Kutta codes , 1988 .
[2] K. Burrage,et al. Adaptive stepsize based on control theory for stochastic differential equations , 2004 .
[3] Peter A. Forsyth,et al. A finite volume approach for contingent claims valuation , 2001 .
[4] Conall O'Sullivan,et al. On the acceleration of explicit finite difference methods for option pricing , 2011 .
[5] J. Martín-Vaquero,et al. SERK2v2: A new second‐order stabilized explicit Runge‐Kutta method for stiff problems , 2013 .
[6] Lawrence S. Kroll. Mathematica--A System for Doing Mathematics by Computer. , 1989 .
[7] P. Houwen,et al. On the Internal Stability of Explicit, m‐Stage Runge‐Kutta Methods for Large m‐Values , 1979 .
[8] J. Martín-Vaquero,et al. Second-order stabilized explicit Runge-Kutta methods for stiff problems , 2009, Comput. Phys. Commun..
[9] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[10] D. A. Voss,et al. A linearly implicit predictor–corrector scheme for pricing American options using a penalty method approach , 2006 .
[11] C. Loan,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .
[12] John Schoenmakers,et al. Policy iteration for american options: overview , 2006, Monte Carlo Methods Appl..
[13] P. Boyle,et al. Numerical Evaluation of Multivariate Contingent Claims , 1989 .
[14] M. Broadie,et al. American Capped Call Options on Dividend-Paying Assets , 1995 .
[15] Kjell Gustafsson,et al. Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods , 1991, TOMS.
[16] Willem Hundsdorfer,et al. RKC time-stepping for advection-diffusion-reaction problems , 2004 .
[17] Peter A. Forsyth,et al. A finite element approach to the pricing of discrete lookbacks with stochastic volatility , 1999 .
[18] Michael D. Marcozzi,et al. The valuation of foreign currency options under stochastic interest rates , 2003 .
[19] C. Chiarella,et al. Evaluation of American strangles , 2002 .
[20] Aslak Tveito,et al. Penalty methods for the numerical solution of American multi-asset option problems , 2008 .
[21] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[22] Jan G. Verwer,et al. An Implicit-Explicit Runge-Kutta-Chebyshev Scheme for Diffusion-Reaction Equations , 2004, SIAM J. Sci. Comput..
[23] Conall O'Sullivan,et al. Pricing European and American Options under Heston’s Stochastic Volatility Model with Accelerated Explicit Finite Differencing Methods , 2010 .
[24] Stephen Wolfram,et al. Mathematica: a system for doing mathematics by computer (2nd ed.) , 1991 .
[25] Manuel Torrilhon,et al. Essentially optimal explicit Runge–Kutta methods with application to hyperbolic–parabolic equations , 2007, Numerische Mathematik.
[26] V. Thomée,et al. Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data , 1989 .
[27] Eduardo S. Schwartz,et al. The Valuation of American Put Options , 1977 .
[28] V. I. LEBEDEV. A new method for determining the roots of polynomials of least deviation on a segment with weight and subject to additional conditions. Part I , 1993 .
[29] M. Yousuf,et al. Smoothing schemes for reaction-diffusion systems with nonsmooth data , 2009 .
[30] Francis A. Longstaff,et al. Valuing American Options by Simulation: A Simple Least-Squares Approach , 2001 .
[31] Abdul-Qayyum M. Khaliq,et al. Time-stepping algorithms for semidiscretized linear parabolic PDEs based on rational approximants with distinct real poles , 1996, Adv. Comput. Math..
[32] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[33] A. Medovikov. High order explicit methods for parabolic equations , 1998 .
[34] Linda R. Petzold,et al. Runge-Kutta-Chebyshev projection method , 2006, J. Comput. Phys..
[35] R. C. Merton,et al. Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.
[36] Assyr Abdulle,et al. Second order Chebyshev methods based on orthogonal polynomials , 2001, Numerische Mathematik.
[37] Assyr Abdulle,et al. Fourth Order Chebyshev Methods with Recurrence Relation , 2001, SIAM J. Sci. Comput..
[38] L. Shampine,et al. RKC: an explicit solver for parabolic PDEs , 1998 .
[39] P. Gremaud,et al. Super-time-stepping acceleration of explicit schemes for parabolic problems , 1996 .
[40] Christoph Reisinger,et al. On the Use of Policy Iteration as an Easy Way of Pricing American Options , 2010, SIAM J. Financial Math..
[41] Song-Ping Zhu,et al. An inverse finite element method for pricing American options , 2013 .
[42] Assyr Abdulle,et al. S-ROCK: Chebyshev Methods for Stiff Stochastic Differential Equations , 2008, SIAM J. Sci. Comput..
[43] V. Thomée,et al. ON RATIONAL APPROXIMATIONS OF SEMIGROUPS , 1979 .
[44] Kjell Gustafsson,et al. Control Strategies for the Iterative Solution of Nonlinear Equations in ODE Solvers , 1997, SIAM J. Sci. Comput..
[45] L. M. Skvortsov. Explicit stabilized Runge-Kutta methods , 2011 .
[46] Peter A. Forsyth,et al. Quadratic Convergence for Valuing American Options Using a Penalty Method , 2001, SIAM J. Sci. Comput..
[47] Fernando Zapatero,et al. Monte Carlo Valuation of American Options through Computation of the Optimal Exercise Frontier , 2000, Journal of Financial and Quantitative Analysis.
[48] A. Abdulle,et al. S-ROCK methods for stiff Ito SDEs , 2008 .
[49] Conall O'Sullivan,et al. PRICING EUROPEAN AND AMERICAN OPTIONS IN THE HESTON MODEL WITH ACCELERATED EXPLICIT FINITE DIFFERENCING METHODS , 2013 .
[50] P. Forsyth,et al. Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance , 2007 .
[51] Conall O'Sullivan,et al. Pricing Options under Heston's Stochastic Volatility Model via Accelerated Explicit Finite Differencing Methods , 2010 .