Inverse Box–Cox: The power-normal distribution

Box-Cox transformation system produces the power normal (PN) family, whose members include normal and lognormal distributions. We study the moments of PN and obtain expressions for its mean and variance. The quantile functions and a quantile measure of skewness are discussed to show that the PN family is ordered with respect to the transformation parameter. Chebyshev-Hermite polynomials are used to show that the correlation coefficient is smaller in the PN scale than the original scale. We use the Frechet bounds to obtain expressions for the lower and upper bounds of the correlation coefficient. A numerical routine is used to compute the bounds. The transformation parameter of the PN family is used to investigate the effects of model uncertainty on the upper quantile estimates.

[1]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[2]  N. Duan Smearing Estimate: A Nonparametric Retransformation Method , 1983 .

[3]  M. D. Mostafa,et al.  On the problem of estimation for the bivariate lognormal distribution , 1964 .

[4]  A test for skewness with ordered variables. , 1954, Annals of eugenics.

[5]  J. Overall,et al.  Applied multivariate analysis , 1983 .

[6]  Jeremy MG Taylor,et al.  The Retransformed Mean after a Fitted Power Transformation , 1986 .

[7]  V. Zwet Convex transformations of random variables , 1965 .

[8]  Robert H. Shumway,et al.  Estimating Mean Concentrations Under Transformation for Environmental Data With Detection Limits , 1989 .

[9]  David Ruppert,et al.  On prediction and the power transformation family , 1981 .

[10]  N. L. Johnson,et al.  Systems of frequency curves generated by methods of translation. , 1949, Biometrika.

[11]  A. Atkinson,et al.  Grouped Likelihood for the Shifted Power Transformation , 1991 .

[12]  H. L. MacGillivray,et al.  Skewness and Asymmetry: Measures and Orderings , 1986 .

[13]  Jeremy M. G. Taylor Measures of Location of Skew Distributions Obtained through Box-Cox Transformations , 1985 .

[14]  J. Gastwirth,et al.  Estimation of upper quantiles under model and parameter uncertainty , 2002 .

[15]  Masashi Goto,et al.  SOME PROPERTIES OF POWER NORMAL DISTRIBUTION , 1980 .

[16]  W. Whitt Bivariate Distributions with Given Marginals , 1976 .

[17]  H. O. Lancaster The Structure of Bivariate Distributions , 1958 .

[18]  Richard A. Johnson,et al.  The Large-Sample Behavior of Transformations to Normality , 1980 .

[19]  M. E. Johnson,et al.  Multivariate Statistical Simulation , 1988 .

[20]  Santiago Velilla,et al.  Diagnostics and Robust Estimation in Multivariate Data Transformations , 1995 .

[21]  Kanti V. Mardia,et al.  Families of Bivariate Distributions , 1970 .

[22]  Charles N. Haas,et al.  Importance of Distributional Form in Characterizing Inputs to Monte Carlo Risk Assessments , 1997 .