Investigation of irradiation defects and hardening of cold-worked vanadium alloys

[1]  X. Meng,et al.  Effect of cold work deformationon irradiation hardening of vanadium alloys , 2022, Nuclear Fusion.

[2]  A. Kimura,et al.  A comparison study of change in hardness and microstructures of a Zr-added FeCrAl ODS steel irradiated with heavy ions , 2022, Materials Science and Engineering: A.

[3]  N. Gayathri,et al.  Post irradiated microstructure and mechanical properties of pure V , 2022, Journal of Nuclear Materials.

[4]  Yifan Zhang,et al.  Plasticity Improvement and Radiation Hardening Reduction of Y Doped V-4Cr-4Ti Alloy , 2022, Journal of Nuclear Materials.

[5]  F. Luo,et al.  Effect of yttrium content on microstructure and irradiation behavior of V-4Cr-4Ti-xY alloys , 2021, Journal of Nuclear Materials.

[6]  A. Kimura,et al.  Hardening of high-energy self-ion irradiated FeCrAl ODS alloys evaluated by micro- and nano-hardness tests , 2021 .

[7]  Qingyu Li,et al.  In-situ TEM study of the effect of pre-existing dislocation on loop evolution in 508-III steel during Fe+ irradiation , 2021, Journal of Nuclear Materials.

[8]  F. Luo,et al.  The Effect of Yttrium Addition on the Microstructure and Irradiation Hardening in V-4Cr-4Ti Alloy under Self-Ion Irradiation , 2021, Metals.

[9]  Rongqiao Wang,et al.  A new variational line tension model for accurate evaluation of the stress effect on cross-slip energy barrier in face-centered cubic metals , 2019, Scripta Materialia.

[10]  G. Voyiadjis,et al.  The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates , 2018, Acta Materialia.

[11]  N. Bertin,et al.  Dislocation Networks and the Microstructural Origin of Strain Hardening. , 2017, Physical review letters.

[12]  S. Yang,et al.  Influence of high-temperature ion irradiation on microstructures of the deformed and heat-treated V-4Cr-4Ti alloy , 2017 .

[13]  C. Barcellini,et al.  Monolayer-thick TiO precipitation in V-4Cr-4Ti alloy induced by proton irradiation , 2017 .

[14]  M. Narui,et al.  Dose dependence of irradiation hardening of neutron irradiated vanadium alloys by using temperature control rig in JMTR , 2016 .

[15]  F. Wan,et al.  Characterization of microstructure in hydrogen ion irradiated vanadium at room temperature and the microstructural evolution during post-irradiation annealing , 2016 .

[16]  J. Busby,et al.  Formulating the strength factor α for improved predictability of radiation hardening , 2015 .

[17]  T. Muroga,et al.  Present Status of Vanadium Alloys for Fusion Applications , 2014 .

[18]  K. Murty,et al.  Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel , 2014 .

[19]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[20]  C. Domain,et al.  Mechanisms of radiation strengthening in Fe–Cr alloys as revealed by atomistic studies , 2013 .

[21]  Zhiqiang Wang,et al.  Modeling effects of initial dislocation microstructure on the yield strength in FCC single crystal Cu with dislocation dynamics , 2013 .

[22]  J. Beamish,et al.  Dislocation densities and lengths in solid 4 He from elasticity measurements , 2013 .

[23]  Steven J. Zinkle,et al.  Materials Challenges in Nuclear Energy , 2013 .

[24]  Y. Matsukawa,et al.  In situ TEM study on elastic interaction between a prismatic loop and a gliding dislocation , 2012 .

[25]  T. Muroga,et al.  Overview of the vanadium alloy researches for fusion reactors , 2011 .

[26]  I. M. Robertson,et al.  Effect of ion irradiation-produced defects on the mobility of dislocations in 304 stainless steel , 2011 .

[27]  P. Hosemann Studying Radiation Damage in Structural Materials by Using Ion Accelerators , 2011 .

[28]  Mark Asta,et al.  Calculation of impurity diffusivities in α-Fe using first-principles methods , 2010 .

[29]  Blas P. Uberuaga,et al.  Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission , 2010, Science.

[30]  D. Bacon,et al.  Atomic-scale mechanisms of void hardening in bcc and fcc metals , 2010 .

[31]  S. Zinkle,et al.  Structural materials for fission & fusion energy , 2009 .

[32]  S. Kotrechko,et al.  Irradiation hardening of reactor pressure vessel steels due to the dislocation loop evolution , 2009 .

[33]  D. Hoelzer,et al.  Mechanical properties of irradiated ODS-EUROFER and nanocluster strengthened 14YWT , 2009 .

[34]  Brian D. Wirth,et al.  Recent Developments in Irradiation-Resistant Steels , 2008 .

[35]  S. Pellegrino,et al.  JANNUS: experimental validation at the scale of atomic modelling , 2008 .

[36]  H. Ullmaier,et al.  Dislocation loops and bubbles in oxide dispersion strengthened ferritic steel after helium implantation under stress , 2008 .

[37]  E. Wakai,et al.  Point Defect Formation in V-4Cr-4Ti and F82H Irradiated with Fission and Fusion Neutrons , 2005 .

[38]  L. Zepeda-Ruiz,et al.  On the character of self-interstitial dislocation loops in vanadium , 2005 .

[39]  G. R. Odette,et al.  Recent progress on development of vanadium alloys for fusion , 2004 .

[40]  Steven J. Zinkle,et al.  Observation and analysis of defect cluster production and interactions with dislocations , 2004 .

[41]  S. Ukai,et al.  Swelling rate versus swelling correlation in 20% cold-worked 316 stainless steels , 2003 .

[42]  T. Yoshiie,et al.  Point defect behavior in electron irradiated V–4Cr–4Ti alloy , 2002 .

[43]  T. Muroga,et al.  Microstructure of vanadium alloys during ion irradiation with stepwise change of temperature , 2000 .

[44]  H. Matsui,et al.  Radiation-induced precipitation in V-(Cr,Fe)-Ti alloys irradiated at low temperature with low dose during neutron or ion irradiation , 2000 .

[45]  H. Matsui,et al.  Effects of temperature change on the microstructural evolution of vanadium alloys under ion irradiation , 2000 .

[46]  H. Matsui,et al.  Mechanical behavior and microstructural evolution of vanadium alloys irradiated in ATR-A1 , 2000 .

[47]  A. Kohyama,et al.  A new Multiple Beams–Material Interaction Research Facility for radiation damage studies in fusion materials , 2000 .

[48]  H. Matsui,et al.  Microstructural evolution and hardening of neutron irradiated vanadium alloys at low temperatures in Japan Material Testing Reactor , 1999 .

[49]  Brian D. Wirth,et al.  Primary damage formation in bcc iron , 1997 .

[50]  B. N. Singh,et al.  Mechanisms for decoration of dislocations by small dislocation loops under cascade damage conditions , 1997 .

[51]  P. Rice,et al.  Microstructure of V-4Cr-4Ti following low temperature neutron irradiation , 1996 .

[52]  Dierk Raabe,et al.  Simulation of Dislocation Statics by Using 3D Field Equations for Dislocation Segments in Anisotropic Media / Simulation der Versetzungsstatik mit dreidimensionalen Feldgleichungen für Versetzungssegmente in anisotropen Medien , 1996 .

[53]  David L. Smith,et al.  Reference vanadium alloy V-4Cr-4Ti for fusion application , 1995 .

[54]  C. Abromeit Aspects of simulation of neutron damage by ion irradiation , 1994 .

[55]  D. R. Diercks,et al.  Vanadium-base alloys for fusion reactor applications — a review , 1985 .

[56]  S. Allen,et al.  Foil thickness measurements from convergent-beam diffraction patterns An experimental assessment of errors , 1982 .

[57]  J. Lenkkeri,et al.  An investigation of elastic moduli of vanadium-chromium alloys , 1978 .

[58]  M. Makin,et al.  DISLOCATION MOVEMENT THROUGH RANDOM ARRAYS OF OBSTACLES , 1966 .

[59]  B. Masters Dislocation Loops in Irradiated Iron , 1963, Nature.