Explaining the CMS dilepton mass endpoint in the NMSSM
暂无分享,去创建一个
[1] Yuehua Wu,et al. Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $$\sqrt{s}=8$$s=8 TeV pp collisions with the ATLAS detector , 2015, 1503.03290.
[2] U. Sarkar,et al. Explaining the CMS $eejj$ and $e\ \rm{missing}\ p_T \ jj$ excess and leptogenesis in superstring inspired $E_6$ models , 2015, 1501.04815.
[3] A. Barr,et al. A boost for the EW SUSY hunt: monojet-like search for compressed sleptons at LHC14 with 100 fb−1 , 2015, 1501.02511.
[4] B. Dutta,et al. Light Higgsino decays as a probe of the NMSSM , 2014, 1412.2774.
[5] T. Kamon,et al. Probing Compressed Sleptons at the LHC using Vector Boson Fusion Processes , 2014, 1411.6043.
[6] C. Wagner,et al. CMS kinematic edge from sbottoms , 2014, 1410.4998.
[7] S. Su,et al. Impact of LSP character on Slepton reach at the LHC , 2014, 1408.2841.
[8] S. M. Etesami,et al. Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV , 2014, The European physical journal. C, Particles and fields.
[9] JiJi Fan,et al. In wino veritas? Indirect searches shed light on neutralino dark matter , 2013, 1307.4400.
[10] T. Kamon,et al. Top squark searches using dilepton invariant mass distributions and bino-Higgsino dark matter at the LHC , 2013, 1302.3231.
[11] Maxim Perelstein,et al. XENON100 implications for naturalness in the MSSM, NMSSM, and $\lambda$-supersymmetry model , 2012, 1208.0833.
[12] M. Perelstein,et al. Fine-tuning implications of direct dark matter searches in the MSSM , 2011, 1107.5048.
[13] Ulrich Ellwanger,et al. NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model , 2011, Comput. Phys. Commun..
[14] F. Maltoni,et al. MadGraph 5: going beyond , 2011, 1106.0522.
[15] Cyril Hugonie,et al. The Next-to-Minimal Supersymmetric Standard Model , 2009, 0910.1785.
[16] Christophe Delaere,et al. Measurement of Z-pair production in e(+)e(-) collisions and constraints on anomalous neutral gauge couplings , 2009 .
[17] J. Huston,et al. Implications of CTEQ global analysis for collider observables , 2008, 0802.0007.
[18] C. Hugonie,et al. NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions , 2006, Comput. Phys. Commun..
[19] C. Hugonie,et al. NMHDECAY 2.1: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM , 2005, Comput. Phys. Commun..
[20] M. Mühlleitner,et al. SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM , 2003, Comput. Phys. Commun..
[21] S. Mrenna,et al. Pythia 6.3 physics and manual , 2003, hep-ph/0308153.
[22] R. Arnowitt,et al. Coannihilation effects in supergravity and D-brane models , 2001, hep-ph/0102181.
[23] J. Ellis,et al. Exploration of elastic scattering rates for supersymmetric dark matter , 2000, hep-ph/0007113.
[24] Michael Spira,et al. PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD , 1996 .
[25] Manuel Drees,et al. SUPERSYMMETRIC MODELS WITH EXTENDED HIGGS SECTOR , 1989 .
[26] J. L. Lopez,et al. Upper bounds on Higgs and top quark masses in the flipped SU(5)×U(1) superstring model , 1989 .
[27] Ellis,et al. Higgs bosons in a nonminimal supersymmetric model. , 1989, Physical review. D, Particles and fields.