Explaining the CMS dilepton mass endpoint in the NMSSM

[1]  Yuehua Wu,et al.  Search for supersymmetry in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in $$\sqrt{s}=8$$s=8 TeV pp collisions with the ATLAS detector , 2015, 1503.03290.

[2]  U. Sarkar,et al.  Explaining the CMS $eejj$ and $e\ \rm{missing}\ p_T \ jj$ excess and leptogenesis in superstring inspired $E_6$ models , 2015, 1501.04815.

[3]  A. Barr,et al.  A boost for the EW SUSY hunt: monojet-like search for compressed sleptons at LHC14 with 100 fb−1 , 2015, 1501.02511.

[4]  B. Dutta,et al.  Light Higgsino decays as a probe of the NMSSM , 2014, 1412.2774.

[5]  T. Kamon,et al.  Probing Compressed Sleptons at the LHC using Vector Boson Fusion Processes , 2014, 1411.6043.

[6]  C. Wagner,et al.  CMS kinematic edge from sbottoms , 2014, 1410.4998.

[7]  S. Su,et al.  Impact of LSP character on Slepton reach at the LHC , 2014, 1408.2841.

[8]  S. M. Etesami,et al.  Searches for electroweak production of charginos, neutralinos, and sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV , 2014, The European physical journal. C, Particles and fields.

[9]  JiJi Fan,et al.  In wino veritas? Indirect searches shed light on neutralino dark matter , 2013, 1307.4400.

[10]  T. Kamon,et al.  Top squark searches using dilepton invariant mass distributions and bino-Higgsino dark matter at the LHC , 2013, 1302.3231.

[11]  Maxim Perelstein,et al.  XENON100 implications for naturalness in the MSSM, NMSSM, and $\lambda$-supersymmetry model , 2012, 1208.0833.

[12]  M. Perelstein,et al.  Fine-tuning implications of direct dark matter searches in the MSSM , 2011, 1107.5048.

[13]  Ulrich Ellwanger,et al.  NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model , 2011, Comput. Phys. Commun..

[14]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[15]  Cyril Hugonie,et al.  The Next-to-Minimal Supersymmetric Standard Model , 2009, 0910.1785.

[16]  Christophe Delaere,et al.  Measurement of Z-pair production in e(+)e(-) collisions and constraints on anomalous neutral gauge couplings , 2009 .

[17]  J. Huston,et al.  Implications of CTEQ global analysis for collider observables , 2008, 0802.0007.

[18]  C. Hugonie,et al.  NMSPEC: A Fortran code for the sparticle and Higgs masses in the NMSSM with GUT scale boundary conditions , 2006, Comput. Phys. Commun..

[19]  C. Hugonie,et al.  NMHDECAY 2.1: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM , 2005, Comput. Phys. Commun..

[20]  M. Mühlleitner,et al.  SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM , 2003, Comput. Phys. Commun..

[21]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[22]  R. Arnowitt,et al.  Coannihilation effects in supergravity and D-brane models , 2001, hep-ph/0102181.

[23]  J. Ellis,et al.  Exploration of elastic scattering rates for supersymmetric dark matter , 2000, hep-ph/0007113.

[24]  Michael Spira,et al.  PROSPINO: A Program for the production of supersymmetric particles in next-to-leading order QCD , 1996 .

[25]  Manuel Drees,et al.  SUPERSYMMETRIC MODELS WITH EXTENDED HIGGS SECTOR , 1989 .

[26]  J. L. Lopez,et al.  Upper bounds on Higgs and top quark masses in the flipped SU(5)×U(1) superstring model , 1989 .

[27]  Ellis,et al.  Higgs bosons in a nonminimal supersymmetric model. , 1989, Physical review. D, Particles and fields.