Regulation of carbon catabolism in Bacillus species.

The gram-positive bacterium Bacillus subtilisis capable of using numerous carbohydrates as single sources of carbon and energy. In this review, we discuss the mechanisms of carbon catabolism and its regulation. Like many other bacteria, B. subtilis uses glucose as the most preferred source of carbon and energy. Expression of genes involved in catabolism of many other substrates depends on their presence (induction) and the absence of carbon sources that can be well metabolized (catabolite repression). Induction is achieved by different mechanisms, with antitermination apparently more common in B. subtilis than in other bacteria. Catabolite repression is regulated in a completely different way than in enteric bacteria. The components mediating carbon catabolite repression in B. subtilis are also found in many other gram-positive bacteria of low GC content.

[1]  M. Voskuil,et al.  Significance of HPr in catabolite repression of alpha-amylase , 1996, Journal of bacteriology.

[2]  J. Deutscher,et al.  New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[3]  S. Schönert,et al.  Properties of maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) in Bacillus subtilis: evidence for its contribution to maltodextrin utilization. , 1999, Research in microbiology.

[4]  F. Friedberg,et al.  Cloning and characterization of the beta-amylase gene from Bacillus polymyxa , 1986, Journal of bacteriology.

[5]  T. Henkin,et al.  Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA , 1994, Journal of bacteriology.

[6]  R. Ye,et al.  Glucitol induction in Bacillus subtilis is mediated by a regulatory factor, GutR , 1994, Journal of bacteriology.

[7]  G. Rapoport,et al.  Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon , 1995, Journal of bacteriology.

[8]  I. Pócsi,et al.  Cyclodextrin glycosyltransferase may be the only starch‐degrading enzyme in Bacillus macerans , 1995, Biotechnology and applied biochemistry.

[9]  W. Hillen,et al.  A Bacillus subtilis 168 mutant with increased xylose uptake can utilize xylose as sole carbon source , 1996 .

[10]  L. Hederstedt The Krebs Citric Acid Cycle , 1993 .

[11]  T. Henkin,et al.  Transcriptional Activation of the Bacillus subtilis ackA Gene Requires Sequences Upstream of the Promoter , 1998, Journal of bacteriology.

[12]  Michael Hecker,et al.  Role of CcpA in Regulation of the Central Pathways of Carbon Catabolism in Bacillus subtilis , 1999, Journal of bacteriology.

[13]  M. Steinmetz Carbohydrate Catabolism: Pathways, Enzymes, Genetic Regulation, and Evolution , 1993 .

[14]  M. Saier,et al.  Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria. , 1994, Research in microbiology.

[15]  M. Dahl,et al.  Molecular analysis of the interaction between the Bacillus subtilis trehalose repressor TreR and the tre operator , 1998, Molecular and General Genetics MGG.

[16]  Andrew Wright,et al.  Protein phosphorylation regulates transcription of the β-glucoside utilization operon in E. coli , 1989, Cell.

[17]  P. Tavares,et al.  Mode of action of AraR, the key regulator of l‐arabinose metabolism in Bacillus subtilis , 1999, Molecular microbiology.

[18]  L. Wray,et al.  Catabolite repression of the Bacillus subtilis hut operon requires a cis-acting site located downstream of the transcription initiation site , 1994, Journal of bacteriology.

[19]  J. Deutscher,et al.  Phosphorylation of HPr and Crh by HprK, Early Steps in the Catabolite Repression Signalling Pathway for the Bacillus subtilis Levanase Operon , 1999, Journal of bacteriology.

[20]  W. Hillen,et al.  Glucose and glucose-6-phosphate interaction with Xyl repressor proteins from Bacillus spp. may contribute to regulation of xylose utilization , 1995, Journal of bacteriology.

[21]  H. Kawasaki,et al.  Molecular cloning and nucleotide sequence of an endo-1,5-alpha-L-arabinase gene from Bacillus subtilis. , 1997, European journal of biochemistry.

[22]  M. Arnaud,et al.  Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity , 1992, Journal of bacteriology.

[23]  M. Hecker,et al.  LicT, a Bacillus subtilis transcriptional antiterminator protein of the BglG family , 1996, Journal of bacteriology.

[24]  A. Sonenshein,et al.  The Glucuronic Acid Utilization Gene Cluster from Bacillus stearothermophilus T-6 , 1999, Journal of bacteriology.

[25]  A. Aronson,et al.  A Bacillus subtilis bglA gene encoding phospho-beta-glucosidase is inducible and closely linked to a NADH dehydrogenase-encoding gene. , 1994, Gene.

[26]  M. Hecker,et al.  Regulation of the activity of the Bacillus subtilis antiterminator LicT by multiple PEP‐dependent, enzyme I‐ and HPr‐catalysed phosphorylation , 1999, Molecular microbiology.

[27]  H. de Lencastre,et al.  The Bacillus subtilis L-arabinose (ara) operon: nucleotide sequence, genetic organization and expression. , 1997, Microbiology.

[28]  J. Deutscher,et al.  The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr kinase/phosphatase , 1999, Molecular microbiology.

[29]  B. Henrissat,et al.  The gene glvA of Bacillus subtilis 168 encodes a metal-requiring, NAD(H)-dependent 6-phospho-alpha-glucosidase. Assignment to family 4 of the glycosylhydrolase superfamily. , 1998, The Journal of biological chemistry.

[30]  U. Sauer,et al.  Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis , 1996, Applied and environmental microbiology.

[31]  M. Débarbouillé,et al.  Levanase operon of Bacillus subtilis includes a fructose-specific phosphotransferase system regulating the expression of the operon. , 1990, Journal of molecular biology.

[32]  R. Borriss,et al.  Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. , 1995, Microbiology.

[33]  Jörg Stülke,et al.  Coupling Physiology and Gene Regulation in Bacteria: The Phosphotransferase Sugar Uptake System Delivers the Signals , 1998, Naturwissenschaften.

[34]  P. Postma,et al.  The glucose permease of the phosphotransferase system of Bacillus subtilis: evidence for IIGlc and IIIGlc domains , 1991, Molecular microbiology.

[35]  J. Stülke,et al.  Regulation of the Bacillus subtilis GlcT Antiterminator Protein by Components of the Phosphotransferase System , 1998, Journal of bacteriology.

[36]  S. Schauder,et al.  Crystal structure of the IIB subunit of a fructose permease (IIBLev) from Bacillus subtilis. , 1998, Journal of molecular biology.

[37]  Y. Fujita,et al.  Bacillus subtilis gnt repressor mutants that diminish gluconate-binding ability , 1995, Journal of bacteriology.

[38]  M. Hecker,et al.  Transcriptional analysis of bglPH expression in Bacillus subtilis: evidence for two distinct pathways mediating carbon catabolite repression , 1996, Journal of bacteriology.

[39]  H. Zuber,et al.  Cloning and sequencing of the genes encoding glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase (gap operon) from mesophilic Bacillus megaterium: comparison with corresponding sequences from thermophilic Bacillus stearothermophilus. , 1992, Gene.

[40]  J. Knowles,et al.  The beta-glucanase gene from Bacillus amyloliquefaciens shows extensive homology with that of Bacillus subtilis. , 1986, Gene.

[41]  M. Saier,et al.  ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M. Hecker,et al.  The catabolite control protein CcpA controls ammonium assimilation in Bacillus subtilis. , 1999, Journal of molecular microbiology and biotechnology.

[43]  W. Hillen,et al.  Identification of a co‐repressor binding site in catabolite control protein CcpA , 1998, Molecular microbiology.

[44]  K. Devine,et al.  Analysis of a ribose transport operon from Bacillus subtilis. , 1994, Microbiology.

[45]  L. Wray,et al.  trans-Acting Factors Affecting Carbon Catabolite Repression of the hut Operon inBacillus subtilis , 1999, Journal of bacteriology.

[46]  P. Setlow,et al.  Cloning and nucleotide sequences of the genes encoding triose phosphate isomerase, phosphoglycerate mutase, and enolase from Bacillus subtilis , 1994, Journal of bacteriology.

[47]  M. Dahl,et al.  Analysis of DNA flanking the treA gene of Bacillus subtilis reveals genes encoding a putative specific enzyme IITre and a potential regulator of the trehalose operon. , 1996, Gene.

[48]  M. Weickert,et al.  Site-directed mutagenesis of a catabolite repression operator sequence in Bacillus subtilis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[49]  O. Ward,et al.  Hemicellulases of Bacillus species: preliminary comparative studies on production and properties of mannanases and galactanases. , 1990, The Journal of applied bacteriology.

[50]  M. Rose,et al.  Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT , 1997, Molecular microbiology.

[51]  B. Shin,et al.  Regulation of the Bacillus subtilis phosphotransacetylase gene. , 1999, Journal of biochemistry.

[52]  M. Nakano,et al.  Adaptation of Bacillus subtilis to oxygen limitation. , 1997, FEMS microbiology letters.

[53]  H. Sakai,et al.  Molecular cloning and nucleotide sequence of the gene for pyruvate kinase of Bacillus stearothermophilus and the production of the enzyme in Escherichia coli. Evidence that the genes for phosphofructokinase and pyruvate kinase constitute an operon. , 1993, European journal of biochemistry.

[54]  L. Beijer,et al.  Glycerol catabolism in Bacillus subtilis: nucleotide sequence of the genes encoding glycerol kinase (glpK) and glycerol-3-phosphate dehydrogenase (glpD). , 1990, Journal of general microbiology.

[55]  M. Saier,et al.  Multiple Phosphorylation of SacY, a Bacillus subtilisTranscriptional Antiterminator Negatively Controlled by the Phosphotransferase System* , 1997, The Journal of Biological Chemistry.

[56]  A. Borges,et al.  Cloning and sequence analysis of the genes encoding the α and β subunits of the E1 component of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus , 1990 .

[57]  W. Hillen,et al.  Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the Gram‐positive bacteria? , 1995, Molecular microbiology.

[58]  P. Morris,et al.  The amino acid sequence of a Bacillus subtilis phosphoprotein that matches an orfY‐tsr coding sequence , 1992, Molecular microbiology.

[59]  Y. Fujita,et al.  Interaction of a repressor and its binding sites for regulation of the Bacillus subtilis iol divergon. , 1999, Journal of molecular biology.

[60]  S. Aymerich,et al.  Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Rutberg Antitermination of transcription of catabolic operons , 1997, Molecular microbiology.

[62]  G. Shaw,et al.  Cloning, Expression, and Catabolite Repression of a Gene Encoding β-Galactosidase of Bacillus megateriumATCC 14581 , 1998 .

[63]  J. Deutscher,et al.  Protein phosphorylation chain of a Bacillus subtilis fructose-specific phosphotransferase system and its participation in regulation of the expression of the lev operon. , 1997, Biochemistry.

[64]  A. Sarai,et al.  Missense mutations in the Bacillus subtilis gnt repressor that diminish operator binding ability. , 1993, Journal of molecular biology.

[65]  M. Zuker,et al.  Structure of a Bacillus subtilis endo-β-l,4-glucanase gene , 1986 .

[66]  M. Persson,et al.  Antiterminator protein GlpP of Bacillus subtilis binds to glpD leader mRNA. , 1998, Microbiology.

[67]  W. Hillen,et al.  Protein kinase‐dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram‐positive bacteria , 1995, Molecular microbiology.

[68]  W. Hillen,et al.  Contribution of glucose kinase to glucose repression of xylose utilization in Bacillus megaterium , 1997, Journal of bacteriology.

[69]  F. Priest,et al.  Two glucose transport systems in Bacillus licheniformis , 1993, Journal of bacteriology.

[70]  M. Dahl,et al.  The Glucose Kinase of Bacillus subtilis , 1998, Journal of bacteriology.

[71]  F. C. Davis,et al.  Cloning of cellobiose phosphoenolpyruvate-dependent phosphotransferase genes: functional expression in recombinant Escherichia coli and identification of a putative binding region for disaccharides , 1997, Applied and environmental microbiology.

[72]  L. Ingram,et al.  Cloning and sequencing of a cellobiose phosphotransferase system operon from Bacillus stearothermophilus XL-65-6 and functional expression in Escherichia coli , 1993, Journal of bacteriology.

[73]  T. Ferenci,et al.  Gene organisation and regulatory sequences in the sucrose utilisation cluster of Bacillus stearothermophilus NUB36. , 1997, Gene.

[74]  S. Fisher,et al.  Transcription–repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons , 1998, Molecular microbiology.

[75]  S. Fisher,et al.  Control of carbon and nitrogen metabolism in Bacillus subtilis. , 1991, Annual review of microbiology.

[76]  G. Robillard,et al.  The Bacillus stearothermophilus Mannitol Regulator, MtlR, of the Phosphotransferase System , 1999, The Journal of Biological Chemistry.

[77]  T. Henkin,et al.  Regulation of the Bacillus subtilis acetate kinase gene by CcpA , 1993, Journal of bacteriology.

[78]  G. Chambliss Carbon Source-Mediated Catabolite Repression , 1993 .

[79]  M. Saier,et al.  Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis , 1994, Journal of bacteriology.

[80]  C. Higgins,et al.  ABC transporters: from microorganisms to man. , 1992, Annual review of cell biology.

[81]  M. Hecker,et al.  Catabolite repression of beta-glucanase synthesis in Bacillus subtilis. , 1993, Journal of general microbiology.

[82]  Y. Fujita,et al.  Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein , 1994, Journal of bacteriology.

[83]  G. Robillard,et al.  Cloning, expression, and isolation of the mannitol transport protein from the thermophilic bacterium Bacillus stearothermophilus , 1996, Journal of bacteriology.

[84]  W. Hillen,et al.  Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression , 1994, Journal of bacteriology.

[85]  L. J. Mota,et al.  Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene , 1997, Journal of bacteriology.

[86]  W. Hillen,et al.  Regulation of expression, genetic organization and substrate specificity of xylose uptake in Bacillus megaterium , 1997, Molecular microbiology.

[87]  A. Fouet,et al.  The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators , 1990, Journal of bacteriology.

[88]  W. Hillen,et al.  Cloning, expression and functional analyses of the catabolite control protein CcpA from Bacillus megaterium , 1995, Molecular microbiology.

[89]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .

[90]  M. Dahl Enzyme IIGlc contributes to trehalose metabolism in Bacillus subtilis , 1997 .

[91]  Y. Fujita,et al.  Identification of an operator sequence for the Bacillus subtilis gnt operon. , 1989, The Journal of biological chemistry.

[92]  F. Priest,et al.  Maltose uptake and its regulation in Bacillus subtilis. , 1992, FEMS microbiology letters.

[93]  G. Fichant,et al.  Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. , 1999, Journal of molecular biology.

[94]  L. Paulin,et al.  Secretory S complex of Bacillus subtilis: sequence analysis and identity to pyruvate dehydrogenase , 1990, Journal of bacteriology.

[95]  J. Deutscher,et al.  Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. , 1999, Journal of molecular biology.

[96]  S. Aymerich,et al.  Crystal structure of a new RNA‐binding domain from the antiterminator protein SacY of Bacillus subtilis , 1997, The EMBO journal.

[97]  J. Deutscher,et al.  The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[98]  P. Kreuzer,et al.  Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator , 1989, Journal of bacteriology.

[99]  M. Vihinen,et al.  Characterization of a thermostable Bacillus stearothermophilus alpha‐amylase , 1990, Biotechnology and applied biochemistry.

[100]  W. Hillen,et al.  Expression of the Bacillus subtilis xyl operon is repressed at the level of transcription and is induced by xylose , 1988, Journal of bacteriology.

[101]  W. Hillen,et al.  Mutations in Catabolite Control Protein CcpA Separating Growth Effects from Catabolite Repression , 1999, Journal of bacteriology.

[102]  Y. Fujita,et al.  Nucleotide sequence and features of the Bacillus licheniformis gnt operon. , 1994, DNA research : an international journal for rapid publication of reports on genes and genomes.

[103]  I. Sá-Nogueira,et al.  Cloning, functional analysis, and transcriptional regulation of the Bacillus subtilis araE gene involved in L-arabinose utilization , 1997, Journal of bacteriology.

[104]  S. Aymerich,et al.  Induction of saccharolytic enzymes by sucrose in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways , 1989, Journal of bacteriology.

[105]  Y. Fujita,et al.  Possible function and some properties of the CcpA protein of Bacillus subtilis. , 1994, Microbiology.

[106]  A. Danchin,et al.  Catabolite Regulation of the pta Gene as Part of Carbon Flow Pathways in Bacillus subtilis , 1999, Journal of bacteriology.

[107]  Y. Fujita,et al.  The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Pérez-pons,et al.  Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-D-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. , 1991, European journal of biochemistry.

[109]  M. Saier,et al.  Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis , 1984, Journal of bacteriology.

[110]  M. Voskuil,et al.  NADP, corepressor for the Bacillus catabolite control protein CcpA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[111]  G. Chambliss,et al.  Specificity of DNA binding activity of the Bacillus subtilis catabolite control protein CcpA , 1995, Journal of bacteriology.

[112]  H. Fiegler,et al.  Identification of a Gene in Staphylococcus xylosus Encoding a Novel Glucose Uptake Protein , 1999, Journal of bacteriology.

[113]  A. Delobbe,et al.  Biochemical and genetic study of D-glucitol transport and catabolism in Bacillus subtilis , 1978, Journal of bacteriology.

[114]  M. Débarbouillé,et al.  The transcriptional regulator LevR of Bacillus subtilis has domains homologous to both sigma 54- and phosphotransferase system-dependent regulators. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[115]  J. Deutscher,et al.  Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function? , 1984, Biochemistry.

[116]  R. Allmansberger,et al.  The Bacillus subtilis AraE Protein Displays a Broad Substrate Specificity for Several Different Sugars , 1998, Journal of bacteriology.

[117]  Y. Fujita,et al.  Specific recognition of the Bacillus subtilis gnt cis‐acting catabolite‐responsive element by a protein complex formed between CcpA and seryl‐phosphorylated HPr , 1995, Molecular microbiology.

[118]  M. Arnaud,et al.  In Vitro Reconstitution of Transcriptional Antitermination by the SacT and SacY Proteins of Bacillus subtilis* , 1996, The Journal of Biological Chemistry.

[119]  M. Hecker,et al.  Regulation of the lic Operon ofBacillus subtilis and Characterization of Potential Phosphorylation Sites of the LicR Regulator Protein by Site-Directed Mutagenesis , 1999, Journal of bacteriology.

[120]  D. le Coq,et al.  New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog , 1995, Journal of bacteriology.

[121]  M. Dahl,et al.  Cleavage of trehalose‐phosphate in Bacillus subtilis is catalysed by a Phospho‐α‐(1–1)‐glucosidase encoded by the treA gene , 1995, Molecular microbiology.

[122]  T. Henkin The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. , 1996, FEMS microbiology letters.

[123]  S. Adhya,et al.  A family of bacterial regulators homologous to Gal and Lac repressors. , 1992, The Journal of biological chemistry.

[124]  W. Hillen,et al.  An operator binding-negative mutation of Xyl repressor from Bacillus subtilis is trans dominant in Bacillus megaterium. , 1993, FEMS microbiology letters.

[125]  S. Aymerich,et al.  From genetic to structural characterization of a new class of RNA‐binding domain within the SacY/BglG family of antiterminator proteins , 1997, The EMBO journal.

[126]  R. Klevit,et al.  Binding of the Catabolite Repressor Protein CcpA to Its DNA Target Is Regulated by Phosphorylation of its Corepressor HPr* , 1997, The Journal of Biological Chemistry.

[127]  M H Saier,et al.  Novel phosphotransferase system genes revealed by genome analysis - the complete complement of PTS proteins encoded within the genome of Bacillus subtilis. , 1999, Microbiology.

[128]  L. Beijer,et al.  Utilisation of glycerol and glycerol 3-phosphate is differently affected by the phosphotransferase system in Bacillus subtilis. , 1992, FEMS microbiology letters.

[129]  D. Sun,et al.  A catabolite-resistance mutation is localized in the rpo operon of Bacillus subtilis. , 1984, Canadian journal of microbiology.

[130]  J. Deutscher,et al.  Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by enzyme I and HPr of the phosphotransferase system , 1986, Journal of bacteriology.

[131]  F. Denizot,et al.  Isolation and characterization of the lacA gene encoding beta-galactosidase in Bacillus subtilis and a regulator gene, lacR , 1997, Journal of bacteriology.

[132]  W. Nicholson,et al.  Catabolite repression-resistant mutations of the Bacillus subtilis alpha-amylase promoter affect transcription levels and are in an operator-like sequence. , 1987, Journal of molecular biology.

[133]  C. Moran,et al.  Regulation of Hexuronate Utilization inBacillus subtilis , 1999, Journal of bacteriology.

[134]  U. Völker,et al.  Mutations in Catabolite Control Protein CcpA Showing Glucose-Independent Regulation in Bacillus megaterium , 1999, Journal of bacteriology.

[135]  H. Okada,et al.  Structure of a beta-galactosidase gene of Bacillus stearothermophilus , 1986, Journal of bacteriology.

[136]  D. Brochu,et al.  The HPr(Ser) Kinase of Streptococcus salivarius: Purification, Properties, and Cloning of thehprK Gene , 1999, Journal of bacteriology.

[137]  W. Hillen,et al.  Transcription of the xyl operon is controlled in Bacillus subtilis by tandem overlapping operators spaced by four base-pairs. , 1994, Journal of molecular biology.

[138]  M. Hecker,et al.  Regulation of xylanolytic enzymes in Bacillus subtilis. , 1994, Microbiology.

[139]  M. Zagorec,et al.  Phosphoenolpyruvate:sugar phosphotransferase system of Bacillus subtilis: nucleotide sequence of ptsX, ptsH and the 5’‐end of ptsl and evidence for a ptsHI operon , 1989, Molecular microbiology.

[140]  C. Rivolta,et al.  A novel protein kinase that controls carbon catabolite repression in bacteria , 1998, Molecular microbiology.

[141]  S. Aymerich,et al.  Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system , 1990, Journal of bacteriology.

[142]  R. Perham,et al.  Cloning and sequence analysis of the genes encoding the dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase components of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus. , 1990, European journal of biochemistry.

[143]  G. Rapoport,et al.  The HPr protein of the phosphotransferase system links induction and catabolite repression of the Bacillus subtilis levanase operon , 1995, Journal of bacteriology.

[144]  F. Priest Extracellular enzyme synthesis in the genus Bacillus. , 1977, Bacteriological reviews.

[145]  N. Najimudin,et al.  Regulation of the Bacillus subtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin , 1993, Journal of bacteriology.

[146]  M. Débarbouillé,et al.  Interactions of wild-type and truncated LevR of Bacillus subtilis with the upstream activating sequence of the levanase operon. , 1994, Journal of molecular biology.

[147]  U. Sauer,et al.  Metabolic fluxes in riboflavin-producing Bacillus subtilis , 1997, Nature Biotechnology.

[148]  S. Udaka,et al.  Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. , 1985, Journal of biochemistry.

[149]  S. Ehrlich,et al.  The kdgRKAT operon of Bacillus subtilis: detection of the transcript and regulation by the kdgR and ccpA genes. , 1998, Microbiology.

[150]  I. Paulsen,et al.  CcpB, a Novel Transcription Factor Implicated in Catabolite Repression in Bacillus subtilis , 1998, Journal of bacteriology.

[151]  Y. Fujita,et al.  Organization and transcription of the gluconate operon, gnt, of Bacillus subtilis. , 1986, The Journal of biological chemistry.

[152]  G. Rapoport,et al.  Antagonistic effects of dual PTS‐catalysed phosphorylation on the Bacillus subtilis transcriptional activator LevR , 1998, Molecular microbiology.

[153]  I. Paulsen,et al.  Characterization of Glucose-Specific Catabolite Repression-Resistant Mutants of Bacillus subtilis: Identification of a Novel Hexose:H+ Symporter , 1998, Journal of bacteriology.

[154]  R. S. Hanson,et al.  Effect of Different Nutritional Conditions on the Synthesis of Tricarboxylic Acid Cycle Enzymes , 1967, Journal of bacteriology.

[155]  F. Meinhardt,et al.  Regulation of β-Galactosidase Expression in Bacillus megaterium DSM319 by a XylS/AraC-Type Transcriptional Activator , 1999, Journal of bacteriology.

[156]  M. Saier,et al.  A hybrid response regulator possessing a PEP-dependent phosphorylation domain. , 1999, Microbiology.

[157]  J. Stülke,et al.  Specific interaction of the RNA-binding domain of the bacillus subtilis transcriptional antiterminator GlcT with its RNA target, RAT. , 1999, Journal of molecular biology.

[158]  W. Hillen,et al.  Analysis of CcpA mutations defective in carbon catabolite repression in Bacillus megaterium. , 1997, FEMS microbiology letters.

[159]  L. Beijer,et al.  Mutations in the glycerol kinase gene restore the ability of a ptsGHI mutant of Bacillus subtilis to grow on glycerol. , 1995, Microbiology.

[160]  L. Wray,et al.  Expression of the Bacillus subtilis acsAGene: Position and Sequence Context Affect cre-Mediated Carbon Catabolite Repression , 1998, Journal of bacteriology.

[161]  S. Hastrup ANALYSIS OF THE BACILLUS SUBTILIS XYLOSE REGULON , 1988 .

[162]  E. Glatz,et al.  A dual role for the Bacillus subtilis glpD leader and the GlpP protein in the regulated expression of glpD: antitermination and control of mRNA stability , 1996, Molecular microbiology.

[163]  H. Mobley,et al.  Transport and incorporation of N-acetyl-D-glucosamine in Bacillus subtilis , 1982, Journal of bacteriology.

[164]  H. Watzlawick,et al.  Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization. , 1999, FEMS microbiology letters.

[165]  A. Fouet,et al.  Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[166]  M. Arnaud,et al.  PRD — a protein domain involved in PTS‐dependent induction and carbon catabolite repression of catabolic operons in bacteria , 1998, Molecular microbiology.

[167]  W. Hillen,et al.  Cooperative and non-cooperative DNA binding modes of catabolite control protein CcpA from Bacillus megaterium result from sensing two different signals. , 1997, Journal of molecular biology.

[168]  M. Débarbouillé,et al.  The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[169]  T. Inada,et al.  Mechanism responsible for glucose–lactose diauxie in Escherichia coli: challenge to the cAMP model , 1996, Genes to cells : devoted to molecular & cellular mechanisms.

[170]  Characterization of the presumptive phosphorylation sites of the Bacillus subtilis glucose permease by site-directed mutagenesis: implication in glucose transport and catabolite repression. , 1997, FEMS microbiology letters.

[171]  M. Débarbouillé,et al.  Mutagenesis of the Bacillus subtilis "-12, -24" promoter of the levanase operon and evidence for the existence of an upstream activating sequence. , 1992, Journal of molecular biology.

[172]  Y. Fujita,et al.  Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite‐responsive elements , 1997, Molecular microbiology.

[173]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[174]  C. Holmberg,et al.  An inverted repeat preceding the Bacillus subtilis glpD gene is a conditional terminator of transcription , 1992, Molecular microbiology.

[175]  G. Chambliss,et al.  Contacts between Bacillus subtilis catabolite regulatory protein CcpA and amyO target site. , 1997, Nucleic acids research.

[176]  L Beijer,et al.  The glpP and glpF genes of the glycerol regulon in Bacillus subtilis. , 1993, Journal of general microbiology.

[177]  W. D. de Vos,et al.  Immunological crossreactivity to the catabolite control protein CcpA Bacillus megaterium is found in many gram-positive bacteria. , 1996, FEMS microbiology letters.

[178]  O. Amster-Choder,et al.  Modulation of the dimerization of a transcriptional antiterminator protein by phosphorylation. , 1992, Science.

[179]  P. Postma,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. , 1985, Microbiological reviews.

[180]  Y. Fujita,et al.  Organization and transcription of the myo-inositol operon, iol, of Bacillus subtilis , 1997, Journal of Bacteriology.

[181]  R. Ray,et al.  Induction and carbon catabolite repression in the biosynthesis of beta-amylase by Bacillus megaterium B6. , 1996, Biochemistry and molecular biology international.

[182]  N. Murphy,et al.  The DNA sequence of the gene and genetic control sites for the excreted B. subtilis enzyme beta-glucanase , 1984, Nucleic Acids Res..

[183]  A. Galizzi,et al.  Nucleotide sequence of the amylase gene from Bacillus subtilis. , 1983, Nucleic acids research.

[184]  W. Hillen,et al.  Carbon catabolite repression in bacteria. , 1999, Current opinion in microbiology.

[185]  M. Hecker,et al.  Identification and characterization of a new beta-glucoside utilization system in Bacillus subtilis , 1997, Journal of bacteriology.

[186]  J. Deutscher,et al.  Cloning and Sequencing of two Enterococcal glpKGenes and Regulation of the Encoded Glycerol Kinases by Phosphoenolpyruvate-dependent, Phosphotransferase System-catalyzed Phosphorylation of a Single Histidyl Residue* , 1997, The Journal of Biological Chemistry.

[187]  Y. Shoham,et al.  Cloning and DNA sequence of the gene coding for Bacillus stearothermophilus T-6 xylanase , 1994, Applied and environmental microbiology.

[188]  W. Nicholson,et al.  Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans‐acting gene product homologous to the Escherichia coli lacl and galR repressors , 1991, Molecular microbiology.

[189]  M. Hecker,et al.  Regulation of the putative bglPH operon for aryl-beta-glucoside utilization in Bacillus subtilis , 1995, Journal of bacteriology.