Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
暂无分享,去创建一个
[1] Xianjuan Li,et al. A Space-Time Spectral Method for the Time Fractional Diffusion Equation , 2009, SIAM J. Numer. Anal..
[2] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[3] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[4] R. Nigmatullin. The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.
[5] V. Thomée,et al. Numerical solution via Laplace transforms of a fractional order evolution equation , 2010 .
[6] V. Thomée,et al. Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation , 2010 .
[7] William McLean,et al. Superconvergence of a Discontinuous Galerkin Method for Fractional Diffusion and Wave Equations , 2012, SIAM J. Numer. Anal..
[8] E. Montroll,et al. Random Walks on Lattices. II , 1965 .
[9] L. Gelhar,et al. Field study of dispersion in a heterogeneous aquifer: 2. Spatial moments analysis , 1992 .
[10] G. Burton. Sobolev Spaces , 2013 .
[11] Jun Zou,et al. Numerical Reconstruction of Heat Fluxes , 2005, SIAM J. Numer. Anal..
[12] Masahiro Yamamoto,et al. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems , 2011 .
[13] William McLean,et al. Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation , 2009, Numerical Algorithms.
[14] E. Montroll. Random walks on lattices , 1969 .
[15] Raytcho D. Lazarov,et al. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations , 2012, SIAM J. Numer. Anal..
[16] Jun Zou,et al. Numerical identifications of parameters in parabolic systems , 1998 .
[17] Rudolf Hilfer,et al. Numerical Algorithm for Calculating the Generalized Mittag-Leffler Function , 2008, SIAM J. Numer. Anal..
[18] Naomichi Hatano,et al. Dispersive transport of ions in column experiments: An explanation of long‐tailed profiles , 1998 .
[19] Santos B. Yuste,et al. An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..
[20] William McLean,et al. Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation , 2011, Numerical Algorithms.
[21] Chuanju Xu,et al. Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..
[22] Massimiliano Giona,et al. Fractional diffusion equation and relaxation in complex viscoelastic materials , 1992 .
[23] T. Kaczorek,et al. Fractional Differential Equations , 2015 .
[24] Ralf Metzler,et al. Physical pictures of transport in heterogeneous media: Advection‐dispersion, random‐walk, and fractional derivative formulations , 2002, cond-mat/0202327.
[25] K. Mustapha. An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements , 2011 .
[26] Bangti Jin,et al. Galerkin FEM for Fractional Order Parabolic Equations with Initial Data in H - s , 0 ≤ s ≤ 1 , 2012, NAA.
[27] Masahiro Yamamoto,et al. Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation , 2009 .
[28] Vidar Thomée,et al. The lumped mass finite element method for a parabolic problem , 1985, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.