Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference

By virtue of single-photon interference, we present how to realize a nonlocal N-qubit conditional phase gate, which might be quite useful for the synthesis of arbitrary entangled quantum states of remote qubits required by distributed quantum information processing. Without considering photon loss, our scheme would work in a repeat-until-success fashion with an automatic feedback line added. Even by taking photon loss into consideration, only the success probability is affected, not the gate fidelity.

[1]  Mang Feng,et al.  Toffoli gate originating from a single resonant interaction with cavity QED , 2006 .

[2]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[3]  K J Resch,et al.  Demonstration of a simple entangling optical gate and its use in bell-state analysis. , 2005, Physical review letters.

[4]  X. Zou,et al.  Conditional quantum phase gate using distant atoms and linear optics (5 pages) , 2005 .

[5]  Alessio Serafini,et al.  Distributed quantum computation via optical fibers. , 2006, Physical review letters.

[6]  Guang-Can Guo,et al.  One-step implementation of an N -qubit controlled-phase gate with neutral atoms trapped in an optical cavity , 2007 .

[7]  Hayato Goto,et al.  Multiqubit controlled unitary gate by adiabatic passage with an optical cavity , 2004 .

[8]  J. Cirac,et al.  Distributed quantum computation over noisy channels , 1998, quant-ph/9803017.

[9]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[10]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[11]  Guang-Can Guo,et al.  Implementing a conditional N-qubit phase gate in a largely detuned optical cavity , 2007 .

[12]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[13]  Z. Zhou,et al.  One-step implementation of a multiqubit controlled-phase-flip gate (7 pages) , 2006 .

[14]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Hai-Woong Lee,et al.  Quasideterministic generation of entangled atoms in a cavity. , 2002, Physical review letters.

[16]  M. Bourennane,et al.  Quantum teleportation using three-particle entanglement , 1998 .

[17]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[18]  M. Murao,et al.  Quantum telecloning and multiparticle entanglement , 1998, quant-ph/9806082.

[19]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[20]  J. Eisert,et al.  Optimal local implementation of nonlocal quantum gates , 2000 .

[21]  Y. Lim,et al.  Repeat-until-success linear optics distributed quantum computing. , 2005, Physical review letters.

[22]  Vladimir Buzek,et al.  Multiparticle entanglement with quantum logic networks: Application to cold trapped ions , 2001 .

[23]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[24]  Nonlocal gate of quantum network via cavity quantum electrodynamics (4 pages) , 2005, quant-ph/0501125.

[25]  H. J. Kimble,et al.  Robust quantum gates on neutral atoms with cavity-assisted photon scattering , 2005 .

[26]  Repeat-until-success entanglement of distant atoms via single photon interference , 2007 .

[27]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[29]  Zheng-Fu Han,et al.  Realizing quantum controlled phase flip through cavity QED (5 pages) , 2004 .

[30]  G. S. Agarwal,et al.  Vacuum-induced Stark shifts for quantum logic using a collective system in a high-quality dispersive cavity , 2005 .

[31]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.