Molecular-cloud-scale Chemical Composition. II. Mapping Spectral Line Survey toward W3(OH) in the 3 mm Band

We have conducted a mapping spectral line survey toward the Galactic giant molecular cloud W51 in the 3 mm band with the Mopra 22 m telescope in order to study an averaged chemical composition of the gas extended over a molecular-cloud scale in our Galaxy. We have observed the area of 25′ × 30′, which corresponds to 39 pc × 47 pc. The frequency ranges of the observation are 85.1–101.1 GHz and 107.0–114.9 GHz. In the spectrum spatially averaged over the observed area, spectral lines of 12 molecular species and 4 additional isotopologues are identified. An intensity pattern of the spatially averaged spectrum is found to be similar to that of the spiral arm in the external galaxy M51, indicating that these two sources have similar chemical compositions. The observed area has been classified into five subregions according to the integrated intensity of 13CO(J = 1 − 0) ( ), and contributions of the fluxes of 11 molecular lines from each subregion to the averaged spectrum have been evaluated. For most of the molecular species, 50% or more of the flux comes from the subregions with from 25 to 100 K km s−1, which does not involve active star-forming regions. Therefore, the molecular-cloud-scale spectrum observed in the 3 mm band hardly represents the chemical composition of star-forming cores, but mainly represents the chemical composition of an extended quiescent molecular gas. The present result constitutes a sound base for interpreting the spectra of external galaxies at a resolution of a molecular-cloud scale (∼10 pc) or larger.

[1]  U. Chile,et al.  Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies , 2017, 1707.05352.

[2]  S. Bontemps,et al.  Testing the universality of the star formation efficiency in dense molecular gas , 2017, 1705.00213.

[3]  S. Yamamoto Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation , 2017 .

[4]  P. Caselli,et al.  THE FIRST DETECTIONS OF THE KEY PREBIOTIC MOLECULE PO IN STAR-FORMING REGIONS , 2016, Proceedings of the International Astronomical Union.

[5]  Maryvonne Gerin,et al.  The anatomy of the Orion B Giant Molecular Cloud: A local template for studies of nearby galaxies , 2016, 1611.04037.

[6]  P. Caselli,et al.  On the chemical ladder of esters - Detection and formation of ethyl formate in the W51 e2 hot molecular core , 2016, 1611.00719.

[7]  N. Sakai,et al.  SPECTRAL LINE SURVEY TOWARD A MOLECULAR CLOUD IN IC10 , 2016, 1608.01099.

[8]  A. Ginsburg,et al.  Toward gas exhaustion in the W51 high-mass protoclusters , 2016, 1605.09402.

[9]  N. Sakai,et al.  MOLECULAR DISTRIBUTION IN THE SPIRAL ARM OF M51 , 2016, 1601.06874.

[10]  T. Onaka,et al.  VLT/ISAAC infrared spectroscopy of embedded high-mass YSOs in the Large Magellanic Cloud: Methanol and the 3.47 μm band , 2015, 1511.04141.

[11]  N. Sakai,et al.  SPECTRAL LINE SURVEY TOWARD MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD , 2015, 1512.02327.

[12]  N. Sakai,et al.  SPECTRAL LINE SURVEY TOWARD THE YOUNG MASSIVE PROTOSTAR NGC 2264 CMM3 IN THE 4 mm, 3 mm, AND 0.8 mm BANDS , 2015, 1507.04958.

[13]  E. Bergin,et al.  Tentative detection of ethylene glycol toward W51/e2 and G34.3+0.2 , 2015, 1507.03580.

[14]  Astrophysics,et al.  Exploring the molecular chemistry and excitation in obscured luminous infrared galaxies - An ALMA mm-wave spectral scan of NGC 4418 , 2015, 1506.09027.

[15]  C. Kramer,et al.  Lambda = 3 mm line survey of nearby active galaxies , 2015, 1504.03743.

[16]  G. Fuller,et al.  Physical and chemical differentiation of the luminous star-forming region W49A. Results from the JCMT Spectral Legacy Survey , 2015, 1502.03187.

[17]  Va,et al.  ALMA MULTI-LINE IMAGING OF THE NEARBY STARBURST NGC 253 , 2015, 1501.05694.

[18]  A. Ginsburg,et al.  The dense gas mass fraction in the W51 cloud and its protoclusters , 2014, 1411.1756.

[19]  K. Kohno,et al.  A Multi-Transition Study of Molecules toward NGC 1068 based on High-Resolution Imaging Observations with ALMA , 2014, 1410.5912.

[20]  P. Caselli,et al.  Deuterated methanol in the pre-stellar core L1544 , 2014, 1408.2491.

[21]  A. Fuente,et al.  Molecular line emission in NGC 1068 imaged with ALMA: I. An AGN-driven outflow in the dense molecular gas , 2014, 1405.7706.

[22]  N. Sakai,et al.  SPECTRAL LINE SURVEY TOWARD THE SPIRAL ARM OF M51 IN THE 3 AND 2 mm BANDS , 2014, 1404.1202.

[23]  E. Grebel,et al.  THE ABUNDANCE PROPERTIES OF NEARBY LATE-TYPE GALAXIES. I. THE DATA , 2014, 1403.5461.

[24]  G. Garay,et al.  SMA MILLIMETER OBSERVATIONS OF HOT MOLECULAR CORES , 2014, 1402.2682.

[25]  L. Wiesenfeld,et al.  Rotational quenching of H2CO by molecular hydrogen: cross-sections, rates and pressure broadening , 2013, 1304.4804.

[26]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[27]  P. Andre',et al.  HERSCHEL OBSERVATIONS OF THE W3 GMC (II): CLUES TO THE FORMATION OF CLUSTERS OF HIGH-MASS STARS , 2013, 1301.3805.

[28]  D. Wilner,et al.  SUBMILLIMETER INTERFEROMETRY OF THE LUMINOUS INFRARED GALAXY NGC 4418: A HIDDEN HOT NUCLEUS WITH AN INFLOW AND AN OUTFLOW , 2013, 1301.1878.

[29]  C. Kramer,et al.  A lambda=3 mm molecular line survey of NGC1068. Chemical signatures of an AGN environment , 2012, 1210.4571.

[30]  D. Meier,et al.  SPATIALLY RESOLVED CHEMISTRY IN NEARBY GALAXIES. II. THE NUCLEAR BAR IN MAFFEI 2 , 2012, 1206.4098.

[31]  N. Feautrier,et al.  Fine and hyperfine excitation of C2H by collisions with He at low temperature , 2012 .

[32]  J. Troe,et al.  A KINETIC DATABASE FOR ASTROCHEMISTRY (KIDA) , 2012, 1201.5887.

[33]  R. Neri,et al.  SUBMILLIMETER ARRAY/PLATEAU DE BURE INTERFEROMETER MULTIPLE LINE OBSERVATIONS OF THE NEARBY SEYFERT 2 GALAXY NGC 1068: SHOCK-RELATED GAS KINEMATICS AND HEATING IN THE CENTRAL 100 pc? , 2011, 1105.6089.

[34]  T. An,et al.  The Submillimeter Array 1.3 mm line survey of Arp 220 , 2010, 1012.3753.

[35]  S. Kalenskii,et al.  Spectral survey of the star-forming region W51 e1/e2 at 3 mm , 2010 .

[36]  J. Bieging,et al.  THE ARIZONA RADIO OBSERVATORY CO MAPPING SURVEY OF GALACTIC MOLECULAR CLOUDS. I. THE W51 REGION IN CO AND 13CO J = 2–1 EMISSION , 2010 .

[37]  A. Evans,et al.  VIBRATIONALLY EXCITED HCN IN THE LUMINOUS INFRARED GALAXY NGC 4418 , 2010, 1011.6449.

[38]  A. Faure,et al.  The rotational excitation of HCN and HNC by He: temperature dependence of the collisional rate coefficients , 2010 .

[39]  D. Flower,et al.  The rotational excitation of methanol by molecular hydrogen , 2010 .

[40]  K. Menten,et al.  TRIGONOMETRIC PARALLAX OF W51 MAIN/SOUTH , 2010, 1006.4218.

[41]  R. C. Forrey,et al.  ROTATIONAL QUENCHING OF CO DUE TO H2 COLLISIONS , 2010, 1004.3923.

[42]  Hidehiro Kaneda,et al.  Spectroscopic observations of ices around embedded young stellar objects in the Large Magellanic Cloud with AKARI , 2010, 1004.0049.

[43]  B. Whitney,et al.  THE PRESENT-DAY STAR FORMATION RATE OF THE MILKY WAY DETERMINED FROM SPITZER-DETECTED YOUNG STELLAR OBJECTS , 2010, 1001.3672.

[44]  S. Aalto,et al.  Vibrationally Excited HC3N in NGC 4418 , 2009, Proceedings of the International Astronomical Union.

[45]  Mubdi Rahman,et al.  STAR FORMATION IN MASSIVE CLUSTERS VIA THE WILKINSON MICROWAVE ANISOTROPY PROBE AND THE SPITZER GLIMPSE SURVEY , 2009, 0906.1026.

[46]  K. Menten,et al.  A RING/DISK/OUTFLOW SYSTEM ASSOCIATED WITH W51 NORTH: A VERY MASSIVE STAR IN THE MAKING , 2009, 0904.0325.

[47]  K. Menten,et al.  TRIGONOMETRIC PARALLAXES OF MASSIVE STAR-FORMING REGIONS: III. G59.7+0.1 AND W 51 IRS2 , 2008, 0811.0701.

[48]  R. Neri,et al.  On the chemistry and distribution of HOC+ in M 82 More evidence for extensive PDRs , 2008, 0810.0832.

[49]  G. Wlodarczak,et al.  Detection of vibrationally excited methyl formate in W51 e2 , 2008, 0807.2729.

[50]  U. Chile,et al.  The Second Survey of the Molecular Clouds in the Large Magellanic Cloud by NANTEN. I. Catalog of Molecular Clouds , 2008, 0804.1458.

[51]  J. Ott,et al.  Spectral imaging of the Sagittarius B2 region in multiple 3-mm molecular lines with the Mopra telescope , 2007, 0712.0218.

[52]  L. Girardi,et al.  THE ACS NEARBY GALAXY SURVEY TREASURY , 2007, 0905.3737.

[53]  M. Morris,et al.  The Galactic Center: The Largest Oxygen-bearing Organic Molecule Repository , 2007, 0709.0542.

[54]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[55]  M. Spaans,et al.  Overluminous HNC line emission in Arp 220, NGC 4418 and Mrk 231. Global IR pumping or XDRs? , 2006, astro-ph/0612122.

[56]  T. Oka,et al.  Atomic Carbon in the AFGL 333 Cloud , 2006 .

[57]  J. Cernicharo,et al.  Rotational excitation of carbon monosulfide by collisions with helium , 2006 .

[58]  S. Martín,et al.  A 2 Millimeter Spectral Line Survey of the Starburst Galaxy NGC 253 , 2006 .

[59]  France.,et al.  Organic molecules in the Galactic center - Hot core chemistry without hot cores , 2006, astro-ph/0605031.

[60]  S.Garc'ia-Burillo,et al.  A 2 mm spectral line survey of the starburst galaxy NGC 253 , 2006, astro-ph/0602360.

[61]  K. Menten,et al.  The Distance to the Perseus Spiral Arm in the Milky Way , 2005, Science.

[62]  T. Millar,et al.  A Molecular Line Survey of W3(OH) and W3 IRS 5 from 84.7 to 115.6 GHz: Observational Data and Analyses , 2006 .

[63]  M. A. Brewster,et al.  The 12C/13C Isotope Gradient Derived from Millimeter Transitions of CN: The Case for Galactic Chemical Evolution , 2005 .

[64]  J. Rathborne,et al.  The Boston University-Five College Radio Astronomy Observatory Galactic Ring Survey , 2005, astro-ph/0602160.

[65]  Holger S. P. Müller,et al.  The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists , 2005 .

[66]  D. Meier,et al.  Spatially Resolved Chemistry in Nearby Galaxies. I. The Center of IC 342 , 2004, astro-ph/0410039.

[67]  M. Edmunds,et al.  CNO Abundances in Metal-Rich Environments: Infrared Space Observatory Spectroscopy of Ionized Gas in M51 , 2004 .

[68]  F. Bresolin,et al.  Abundances of Metal-rich H II Regions in M51 , 2004, astro-ph/0407065.

[69]  E. Sutton,et al.  High-Resolution Observations of Methyl Cyanide (CH3CN) toward the Hot Core Regions W51e1/e2 , 2004 .

[70]  W. K. Huchtmeier,et al.  A Catalog of Neighboring Galaxies , 2004 .

[71]  P. Caselli,et al.  Abundant H(2)D+ in the pre-stellar core L1544 , 2003, astro-ph/0304103.

[72]  Y. Kuan,et al.  Acetic Acid in the Hot Cores of Sagitarrius B2(N) and W51 , 2002 .

[73]  H. Liszt,et al.  Comparative chemistry of diffuse clouds. III. Sulfur-bearing molecules. , 2002, astro-ph/0201163.

[74]  W. Irvine,et al.  Survey Observations of c-C2H4O and CH3CHO toward Massive Star-forming Regions , 2001 .

[75]  Sheng-Yuan Liu,et al.  Observations of Formic Acid in Hot Molecular Cores , 2001 .

[76]  E. Herbst,et al.  Molecular Evolution in Collapsing Prestellar Cores , 2001, astro-ph/0202061.

[77]  B. Gibson,et al.  The HI Parkes All Sky Survey: southern observations, calibration and robust imaging , 2001 .

[78]  H. Liszt,et al.  Comparative chemistry of diffuse clouds: II. CN, HCN, HNC, CH3CN& N2H^+ , 2001, astro-ph/0103247.

[79]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[80]  D. Flower Rotational excitation of HCO+ by H2 , 1999 .

[81]  N. Evans Physical conditions in regions of star formation , 1999, astro-ph/9905050.

[82]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[83]  K. Menten,et al.  Hot Gas and Dust in a Protostellar Cluster near W3(OH) , 1999, astro-ph/9901261.

[84]  T. Hirota,et al.  Abundances of HCN and HNC in Dark Cloud Cores , 1998 .

[85]  M. Saito,et al.  H13CO+ and CH3OH Line Observations of Prestellar Dense Cores in the TMC-1C Region. II. Internal Structure , 1998 .

[86]  J. Carpenter,et al.  The W51 Giant Molecular Cloud , 1998, astro-ph/9806298.

[87]  Qizhou Zhang,et al.  Dynamical Collapse in W51 Massive Cores: CS (3-2) and CH3CN Observations , 1998 .

[88]  Holger S. P. Müller,et al.  THE COLOGNE DATABASE FOR MOLECULAR SPECTROSCOPY, CDMS , 2001 .

[89]  E. Bergin,et al.  Carbon Monoxide and Dust Column Densities: The Dust-to-Gas Ratio and Structure of Three Giant Molecular Cloud Cores , 1997 .

[90]  J. Bland-Hawthorn,et al.  The Ringberg Standards for NGC 1068 , 1997 .

[91]  M. P. Gutiérrez,et al.  Shock Chemistry in the Young Bipolar Outflow L1157 , 1997 .

[92]  D. Mehringer Radio Continuum and Radio Recombination Line Observations of W51 , 1994 .

[93]  Masatoshi Ohishi,et al.  A survey of CCS, HC3N, HC5N, and NH3 toward dark cloud cores and their production chemistry , 1992 .

[94]  M. Dopita,et al.  H II region abundances in Seyfert galaxies , 1987 .

[95]  S. Green Collisional Excitation of Interstellar Methyl Cyanide , 1986 .

[96]  H. Müller,et al.  Submillimeter, millimeter, and microwave spectral line catalog. , 1985, Applied optics.

[97]  P. Ho VLA observations of warm NH/sub 3/ associated with mass outflows in W51 , 1983 .

[98]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[99]  C. Lada,et al.  Molecular clouds in the vicinity of W3, W4, and W5 , 1978 .

[100]  S. Chapman,et al.  Collisional excitation of interstellar molecules - Linear molecules CO, CS, OCS, and HC3N , 1978 .

[101]  G. Neugebauer,et al.  Infra-Red Sources in the H II Region W3 , 1972 .