Strengthening the contribution of macroecological models to conservation practice

[1]  Anne Bowser,et al.  Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale , 2018, Biological reviews of the Cambridge Philosophical Society.

[2]  B. McGreavy,et al.  Boundary spanning at the science–policy interface: the practitioners’ perspectives , 2018, Sustainability Science.

[3]  Hugh P Possingham,et al.  Six Common Mistakes in Conservation Priority Setting , 2013, Conservation biology : the journal of the Society for Conservation Biology.

[4]  Simon Ferrier,et al.  Dynamic macroecology and the future for biodiversity , 2012, Global change biology.

[5]  Toke T. Høye,et al.  Opening the black box—Development, testing and documentation of a mechanistically rich agent-based model , 2010 .

[6]  Prue F. E. Addison,et al.  Conservation practitioners' perspectives on decision triggers for evidence‐based management , 2016 .

[7]  S. Reinecke Knowledge brokerage designs and practices in four european climate services: A role model for biodiversity policies? , 2015 .

[8]  Atte Moilanen,et al.  Core concepts of spatial prioritisation in systematic conservation planning , 2012, Biological reviews of the Cambridge Philosophical Society.

[9]  S. Lek,et al.  Uncertainty in ensemble forecasting of species distribution , 2010 .

[10]  J. Gareth Polhill,et al.  The ODD protocol: A review and first update , 2010, Ecological Modelling.

[11]  C. Weiss Expressing Scientific Uncertainty , 2003 .

[12]  Prue F. E. Addison,et al.  Practical solutions for making models indispensable in conservation decision‐making , 2013 .

[13]  Liana N. Joseph,et al.  Targeting Global Protected Area Expansion for Imperiled Biodiversity , 2014, PLoS biology.

[14]  Helen M. Regan,et al.  A TAXONOMY AND TREATMENT OF UNCERTAINTY FOR ECOLOGY AND CONSERVATION BIOLOGY , 2002 .

[15]  Silja Renooij,et al.  Talking probabilities: communicating probabilistic information with words and numbers , 1999, Int. J. Approx. Reason..

[16]  John W. Coffey Concept Mapping and Knowledge Modeling: A Multi-Disciplinary Educational, Informational, and Communication Technology , 2015 .

[17]  Birgit Müller,et al.  A standard protocol for describing individual-based and agent-based models , 2006 .

[18]  Pedro Beja,et al.  Species Conservation Assessments in Oceanic Islands: the Consequences of Precautionary Versus Evidentiary Attitudes , 2016 .

[19]  Philip E. Hulme,et al.  Practitioner’s perspectives: introducing a different voice in applied ecology , 2011 .

[20]  Silja Renooij,et al.  Evaluation of a verbal-numerical probability scale , 2003, Int. J. Approx. Reason..

[21]  P. Hulme EDITORIAL: Bridging the knowing–doing gap: know‐who, know‐what, know‐why, know‐how and know‐when , 2014 .

[22]  Luc Lens,et al.  Mind the gaps when using science to address conservation concerns , 2013, Biodiversity and Conservation.

[23]  M. Neff,et al.  Publication incentives undermine the utility of science: Ecological research in Mexico , 2018 .

[24]  S. Carpenter,et al.  Decision-making under great uncertainty: environmental management in an era of global change. , 2011, Trends in ecology & evolution.

[25]  Mark A. Burgman,et al.  Treatment of uncertainty in conservation under climate change , 2013 .

[26]  Tara G. Martin,et al.  Climate change modifies risk of global biodiversity loss due to land-cover change , 2015 .

[27]  Robin K. S. Hankin,et al.  Introducing untb, an R Package For Simulating Ecological Drift Under the Unified Neutral Theory of Biodiversity , 2007 .

[28]  Gary Carvalho Introduction of the Evidence synthesis: article type , 2018, Proceedings of the Royal Society B: Biological Sciences.

[29]  Alberto J. Cañas,et al.  Concept Map-Based Knowledge Modeling: Perspectives from Information and Knowledge Visualization , 2006, Inf. Vis..

[30]  Anne Bowser,et al.  Building essential biodiversity variables(EBVs) of species distribution and abundanceat a global scale , 2017 .

[31]  C. Merow,et al.  meteR: an r package for testing the maximum entropy theory of ecology , 2017 .

[32]  Anni Arponen,et al.  Projecting Global Biodiversity Indicators under Future Development Scenarios , 2016 .

[33]  Gareth W. Peters,et al.  Severe uncertainty and info‐gap decision theory , 2013 .

[34]  Nathalie Pettorelli,et al.  Maximizing the success of assisted colonizations , 2013 .

[35]  Matthew E. Aiello-Lammens,et al.  Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion , 2017 .

[36]  Alejandro Ruete,et al.  Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps , 2015, Biodiversity data journal.

[37]  Phil Brown,et al.  Bridging research and environmental regulatory processes: the role of knowledge brokers. , 2013, Environmental science & technology.

[38]  Daniel E. Schindler,et al.  The portfolio concept in ecology and evolution , 2015 .

[39]  Atte Moilanen,et al.  Exposing ecological and economic costs of the research‐implementation gap and compromises in decision making , 2018, Conservation biology : the journal of the Society for Conservation Biology.

[40]  Francis W. Zwiers,et al.  Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties , 2010 .

[41]  T. Brooks,et al.  Global Biodiversity Conservation Priorities , 2006, Science.

[42]  Kerrie A. Wilson,et al.  Restoring degraded tropical forests for carbon and biodiversity , 2014 .

[43]  Michael A McCarthy,et al.  Annals of the New York Academy of Sciences Contending with Uncertainty in Conservation Management Decisions , 2022 .

[44]  Richard M. Sibly,et al.  Communicating complex ecological models to non-scientist end users , 2016 .

[45]  Robert P. Anderson,et al.  Maximum entropy modeling of species geographic distributions , 2006 .

[46]  C. Ricotta,et al.  Accounting for uncertainty when mapping species distributions: The need for maps of ignorance , 2011 .

[47]  J. A. Wardekker,et al.  Uncertainty communication in environmental assessments: views from the Dutch science-policy interface , 2008 .

[48]  Simo Sarkki,et al.  Science-policy interfaces for biodiversity: dynamic learning environments for successful impact , 2016, Biodiversity and Conservation.

[49]  A. Magurran,et al.  Fifteen forms of biodiversity trend in the Anthropocene. , 2015, Trends in ecology & evolution.

[50]  Hugh P Possingham,et al.  Two additional principles for determining which species to monitor. , 2015, Ecology.

[51]  Andreas Focks,et al.  Towards better modelling and decision support: Documenting model development, testing, and analysis using TRACE , 2014 .

[52]  Kevin A. Wood,et al.  Co-creation of individual-based models by practitioners and modellers to inform environmental decision-making , 2015 .

[53]  Robert P. Anderson,et al.  Opening the black box: an open-source release of Maxent , 2017 .

[54]  Sarah J. Converse,et al.  Special Issue Article: Adaptive management for biodiversity conservation in an uncertain world Which uncertainty? Using expert elicitation and expected value of information to design an adaptive program , 2011 .

[55]  Piero Visconti,et al.  A framework for the identification of hotspots of climate change risk for mammals , 2018, Global change biology.

[56]  Danielle J. Marceau,et al.  The role of agent-based models in wildlife ecology and management , 2011 .

[57]  David C. Lane,et al.  Diagramming conventions in system dynamics , 2000, J. Oper. Res. Soc..

[58]  I. Bainbridge,et al.  PRACTITIONER'S PERSPECTIVE: How can ecologists make conservation policy more evidence based? Ideas and examples from a devolved perspective , 2014 .

[59]  Volker Grimm,et al.  Ecological models supporting environmental decision making: a strategy for the future. , 2010, Trends in ecology & evolution.

[60]  R. Sibly,et al.  Effects of noise and by-catch on a Danish harbour porpoise population , 2014 .

[61]  Julien Gaffuri,et al.  Mapping ignorance: 300 years of collecting flowering plants in Africa , 2016 .

[62]  Robert P Freckleton,et al.  Making predictive ecology more relevant to policy makers and practitioners , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  S. Aitken,et al.  Whitebark pine (Pinus albicaulis) assisted migration potential: testing establishment north of the species range. , 2012, Ecological applications : a publication of the Ecological Society of America.

[64]  R. Sibly,et al.  An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides , 2014, Ecological modelling.