Equilibrium, Evolutionary stability and Gradient Dynamics

Considered here are equilibria, notably those that solve noncooperative games. Focus is on connections between evolutionary stability, concavity and monotonicity. It is shown that evolutionary stable points are local attractors under gradient dynamics. Such dynamics, while reflecting search for individual improvement, can incorporate myopia, imperfect knowledge and bounded rationality/competence.

[1]  Siegfried Schaible,et al.  Duality for Equilibrium Problems under Generalized Monotonicity , 2000 .

[2]  Sjur Didrik Flåm,et al.  Competitive equilibrium:walras meets darwin , 2000 .

[3]  Sjur Didrik Flåm,et al.  Learning Equilibrium Play: A Myopic Approach , 1999, Comput. Optim. Appl..

[4]  Sjur Didrik Flåm,et al.  Restricted attention, myopic play, and thelearning of equilibrium , 1998, Ann. Oper. Res..

[5]  Sjur Didrik Flåm,et al.  Averaged predictions and the learning of equilibrium play , 1998 .

[6]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[7]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[8]  Sjur Didrik Flåm,et al.  Equilibrium programming using proximal-like algorithms , 1997, Math. Program..

[9]  L. Samuelson Evolutionary Games and Equilibrium Selection , 1997 .

[10]  Fernando Vega-Redondo,et al.  Evolution, Games, and Economic Behaviour , 1996 .

[11]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[12]  Cressman Frequency-Dependent Stability for Two-Species Interactions , 1996, Theoretical population biology.

[13]  M. Benaïm A Dynamical System Approach to Stochastic Approximations , 1996 .

[14]  E. Hopkins Learning, Matching and Aggregation , 1995 .

[15]  Jörgen W. Weibull,et al.  Evolutionary Game Theory , 1996 .

[16]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[17]  Ross Cressman,et al.  The Stability Concept of Evolutionary Game Theory , 1992 .

[18]  D. Friedman EVOLUTIONARY GAMES IN ECONOMICS , 1991 .

[19]  Game Theoretical Foundations of Evolutionary Stability. Lecture Notes in Economics and Mathematical Systems, I.M. Bomze, B.M. Pötscher. Springer-Verlag, Berlin (1989), vi, +145. Price DM 38 , 1990 .

[20]  J. Hofbauer,et al.  Adaptive dynamics and evolutionary stability , 1990 .

[21]  John C. Harsanyi,et al.  Общая теория выбора равновесия в играх / A General Theory of Equilibrium Selection in Games , 1989 .

[22]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[23]  E. Damme Stability and perfection of Nash equilibria , 1987 .

[24]  E. Vandamme Stability and perfection of nash equilibria , 1987 .

[25]  R. Selten A general theory of equilibrium selection in games. Chapter 7: a bargaining problem with transaction costs on one side , 1984 .

[26]  Ken Binmore,et al.  Game theory and the social contract , 1984 .

[27]  Yu. M. Ermol'ev,et al.  Nash equilibrium in n-person games , 1982 .

[28]  K Sigmund,et al.  A note on evolutionary stable strategies and game dynamics. , 1979, Journal of theoretical biology.

[29]  P. Taylor Evolutionarily stable strategies with two types of player , 1979, Journal of Applied Probability.

[30]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[31]  D. E. Matthews Evolution and the Theory of Games , 1977 .

[32]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[33]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[34]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .