Dynamics of ion transport in a bio-derived ionic transistor

Biological processes and electromechanical function in ionic polymers share ion transport as the fundamental processes for sensing, actuation and energy harvesting. Inspired by the similarity in protein-bound cell membranes and polypyrrole membrane (an ionic polymer), our group is developing a hybrid device that provides the template for integrating biology and electronics. The integrated device, referred to as a bio-derived ionic transistor (BIT), consists of a bilayer lipid membrane (BLM) formed on a polypyrrole membrane and has two inputs that regulates the output of the device. This proceedings article will discuss the constructional features of proposed actuator, fabrication procedure of a prototype actuator and discuss a modeling framework for analyzing the dynamics of the ionic response.

[1]  Andreas Janshoff,et al.  Transport across artificial membranes–an analytical perspective , 2006, Analytical and bioanalytical chemistry.

[2]  E. Mandelkow,et al.  Structures of kinesin motor proteins. , 2009, Cell motility and the cytoskeleton.

[3]  O. Worsfold,et al.  Development of a novel optical bionanosensor. , 2004, Biosensors & bioelectronics.

[4]  T. Yoshizawa,et al.  A new pathway in the photoreaction cycle of trans-bacteriorhodopsin and the absorption spectra of its intermediates , 1980, Biophysics of structure and mechanism.

[5]  R. Macdonald,et al.  Interactions of liposomes with planar bilayer membranes , 1989, The Journal of Membrane Biology.

[6]  D. Leo,et al.  Chemoelectrical Energy Conversion of Adenosine Triphosphate using ATPases , 2010 .

[7]  Erich Sackmann,et al.  Polymer-supported membranes as models of the cell surface , 2005, Nature.

[8]  M. K. Andrews,et al.  Conducting polymer sensors for monitoring aromatic hydrocarbons using an electronic nose , 2002 .

[9]  Hua Bai,et al.  Gas Sensors Based on Conducting Polymers , 2007, Sensors (Basel, Switzerland).

[10]  Yonas Tadesse,et al.  Polypyrrole polyvinylidene difluoride composite stripe and zigzag actuators for use in facial robotics , 2008 .

[11]  Donald J. Leo,et al.  Biological transport processes for microhydraulic actuation , 2007 .

[12]  Ingo Köper,et al.  Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes. , 2007, Biochimica et biophysica acta.

[13]  M. Schnitzer,et al.  Force production by single kinesin motors , 2000, Nature Cell Biology.

[14]  N. Nicoloso,et al.  Microactuators based on conducting polymers , 2002, Analytical and bioanalytical chemistry.

[15]  Jiri Janata,et al.  Conducting polymers in electronic chemical sensors , 2003, Nature materials.

[16]  Christopher David Cook,et al.  Bending modeling and its experimental verification for conducting polymer actuators dedicated to manipulation applications , 2006 .

[17]  M. Trojanowicz,et al.  Electrochemical Chiral Sensors and Biosensors , 2009 .

[18]  Danilo De Rossi,et al.  Characterisation of olive oil by an electronic nose based on conducting polymer sensors , 2000 .

[19]  A. Guadarrama,et al.  Array of conducting polymer sensors for the characterisation of wines , 2000 .

[20]  E. Smela Microfabrication of PPy microactuators and other conjugated polymer devices , 1999 .

[21]  Paul S. Cremer,et al.  Solid supported lipid bilayers: From biophysical studies to sensor design , 2006, Surface Science Reports.

[22]  Yonas Tadesse,et al.  Synthesis and cyclic force characterization of helical polypyrrole actuators for artificial facial muscles , 2009 .

[23]  Shaojun Dong,et al.  Conducting polymer polypyrrole supported bilayer lipid membranes. , 2005, Biosensors & bioelectronics.

[24]  Bansi D. Malhotra,et al.  Prospects of conducting polymers in molecular electronics , 2003 .

[25]  Donald J. Leo,et al.  Modeling and characterization of a chemomechanical actuator using protein transporter , 2008 .

[26]  V. Skulachev,et al.  Direct measurement of electric current generation by cytochrome oxidase, H+-ATPase and bacteriorhodopsin. , 1974, Nature.

[27]  Toshio Yanagida,et al.  Direct observation of single kinesin molecules moving along microtubules , 1996, Nature.

[28]  F. Kull,et al.  Kinesin Motors: No Strain, No Gain , 2008, Cell.

[29]  Fabrication of plasma polymerized polythiophene and polypyrrole thin films as chloroform vapor sensors ♣ , 2009 .

[30]  D Needham,et al.  Elastic deformation and failure of lipid bilayer membranes containing cholesterol. , 1990, Biophysical journal.

[31]  D Needham,et al.  A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. , 2000, Cancer research.

[32]  C. Brabec,et al.  Plastic Solar Cells , 2001 .

[33]  R. Tscharner,et al.  Photovoltaic technology: the case for thin-film solar cells , 1999, Science.

[34]  Masahide Kikkawa,et al.  Switch-based mechanism of kinesin motors , 2001, Nature.

[35]  William L. Hwang,et al.  Asymmetric droplet interface bilayers. , 2008, Journal of the American Chemical Society.

[36]  R. Macdonald,et al.  Fusion of synaptic vesicle membranes with planar bilayer membranes. , 1989, Biophysical journal.

[37]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[38]  Elisabeth Smela,et al.  Characterization and modeling of PPy bilayer microactuators Part 1. Curvature , 2006 .

[39]  Ingemar Lundström,et al.  Polypyrrole micro actuators , 1999 .

[40]  L. Nagahara,et al.  Chemical sensors using peptide-functionalized conducting polymer nanojunction arrays , 2005 .

[41]  H. Kiess,et al.  On the ultimate efficiency of solar cells , 1995 .

[42]  T. F. Otero,et al.  Chronoamperometric study of conformational relaxation in PPy(DBS). , 2009, The journal of physical chemistry. B.

[43]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[44]  Nikolaj Gadegaard,et al.  Volume Change in Polypyrrole Studied by Atomic Force Microscopy , 2001 .

[45]  Ingo Köper,et al.  Functional Ion Channels in Tethered Bilayer Membranes—Implications for Biosensors , 2007, Chembiochem : a European journal of chemical biology.

[46]  W. Helfrich The size of bilayer vesicles generated by sonication , 1974 .

[47]  D Needham,et al.  Electro-mechanical permeabilization of lipid vesicles. Role of membrane tension and compressibility. , 1989, Biophysical journal.

[48]  E. Smela,et al.  Microfabricating conjugated polymer actuators. , 2000, Science.

[49]  Charles R. Martin,et al.  Electrochemical investigations of electronically conductive polymers. 2. Evaluation of charge-transport rates in polypyrrole using an alternating current impedance method , 1989 .

[50]  Junbo Gao,et al.  Fabrication and Characterization of Polyaniline Monolithic Actuators Based on a Novel Configuration: Integrally Skinned Asymmetric Membrane , 2002 .

[51]  Y. Duan,et al.  A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme , 2001 .

[52]  P. Nollert,et al.  Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces. , 1995, Biophysical journal.

[53]  B. Desbat,et al.  A phospholipid bilayer supported under a polymerized Langmuir film. , 2003, Biophysical journal.

[54]  William L. Hwang,et al.  Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling. , 2007, Journal of the American Chemical Society.

[55]  Y. Shim,et al.  Lipid-bonded conducting polymer layers for a model biomembrane: application to superoxide biosensors. , 2006, Analytical chemistry.

[56]  R J Fletterick,et al.  The design plan of kinesin motors. , 1997, Annual review of cell and developmental biology.

[57]  Byungkyu Kim,et al.  Design and fabrication of a largely deformable sensorized polymer actuator. , 2005, Biosensors & bioelectronics.

[58]  S. Radhakrishnan,et al.  Conducting Polymers Functionalized with Phthalocyanine as Nitrogen Dioxide Sensors , 2002 .

[59]  Otto S. Wolfbeis,et al.  Optical sensing of pH based on polypyrrole films , 1996 .

[60]  Ari Ivaska,et al.  Polyaniline as pH-sensitive component in plasticized PVC membranes , 2003 .

[61]  Donald J. Leo,et al.  Chemo-mechanical Model for Actuation Based on Biological Membranes* , 2006 .

[62]  Elisabeth Smela,et al.  Electrochemically driven polypyrrole bilayers for moving and positioning bulk micromachined silicon plates , 1999 .

[63]  M. Schliwa,et al.  Directional motility of kinesin motor proteins. , 2000, Biochimica et biophysica acta.

[64]  David Needham,et al.  Functional bionetworks from nanoliter water droplets. , 2007, Journal of the American Chemical Society.

[65]  H Luecke,et al.  Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution. , 1998, Science.

[66]  Gordon G. Wallace,et al.  Towards fully optimized conducting polymer bending sensors: the effect of geometry , 2009 .

[67]  C. Nicolini,et al.  Bacteriorhodopsin-based Langmuir-Schaefer films for solar energy capture , 2003, IEEE Transactions on NanoBioscience.

[68]  Donald J. Leo,et al.  Controlled fluid transport using ATP-powered protein pumps , 2007 .

[69]  A. Charrier,et al.  Direct stabilization of a phospholipid monolayer on H-terminated silicon. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[70]  Reinhard Lipowsky,et al.  Transport of Beads by Several Kinesin Motors , 2007, Biophysical journal.

[71]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[72]  J. V. Hatfield,et al.  Towards an integrated electronic nose using conducting polymer sensors , 1994 .

[73]  J. Lanyi,et al.  Pathways of proton transfer in the light-driven pump bacteriorhodopsin , 1993, Experientia.

[74]  Krishna C. Persaud,et al.  Development of conducting polymer sensor arrays for wound monitoring , 2008 .

[75]  A. Zarbin,et al.  Construction and evaluation of an optical pH sensor based on polyaniline-porous Vycor glass nanocomposite , 2001 .