Transport and Energetic Properties of a Ring of Interacting Spins Coupled to Heat Baths

We study the heat and spin transport properties in a ring of interacting spins coupled to heat baths at different temperatures. We show that interactions, by inducing avoided crossings, can be a means to tune both the total heat current flowing between the ring and the baths, and the way it flows through the system. In particular, we recognize three regimes in which the heat current flows clockwise, counterclockwise, and in parallel. The temperature bias between the baths also induces a spin current within the ring, whose direction and magnitude can be tuned by the interaction. Lastly, we show how the ergotropy of the nonequilibrium steady state can increase significantly near the avoided crossings.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[3]  C. Fleming,et al.  Accuracy of perturbative master equations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Baowen Li,et al.  Control of heat transport in quantum spin systems , 2008, 0807.4575.

[5]  Jochen Gemmer,et al.  Modeling heat transport through completely positive maps. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  D. Segal,et al.  Qubit absorption refrigerator at strong coupling , 2017, 1709.02835.

[7]  Chu Guo,et al.  Many-body open quantum systems beyond Lindblad master equations , 2018, Physical Review A.

[8]  M. Plenio,et al.  Controlling and measuring quantum transport of heat in trapped-ion crystals. , 2013, Physical review letters.

[9]  Gershon Kurizki,et al.  Thermodynamics of quantum systems under dynamical control , 2015, 1503.01195.

[10]  Kavan Modi,et al.  Enhancing the Charging Power of Quantum Batteries. , 2016, Physical review letters.

[11]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[12]  Michele Campisi,et al.  High-Power Collective Charging of a Solid-State Quantum Battery. , 2017, Physical review letters.

[13]  G. Casati,et al.  Minimal motor for powering particle motion from spin imbalance. , 2016, Physical review. E.

[14]  Karl Joulain,et al.  Quantum Thermal Transistor. , 2016, Physical review letters.

[15]  V. Scarani,et al.  Refrigeration beyond weak internal coupling. , 2018, Physical review. E.

[16]  T. Werlang,et al.  Optimal rectification in the ultrastrong coupling regime. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[18]  Miguel Molerón,et al.  Mechanical Autonomous Stochastic Heat Engine. , 2016, Physical review letters.

[19]  W. Kobayashi,et al.  An oxide thermal rectifier , 2009, 0910.1153.

[20]  G. Casati,et al.  Perfect Diode in Quantum Spin Chains. , 2017, Physical review letters.

[21]  A. Bermudez,et al.  Synthetic gauge fields for vibrational excitations of trapped ions. , 2011, Physical review letters.

[22]  G. Fleming,et al.  On the adequacy of the Redfield equation and related approaches to the study of quantum dynamics in electronic energy transfer. , 2009, The Journal of chemical physics.

[23]  T. Brandes,et al.  Transport as a sensitive indicator of quantum criticality , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[24]  Spin-boson thermal rectifier. , 2004, Physical review letters.

[25]  Giuliano Benenti,et al.  Fundamental aspects of steady-state conversion of heat to work at the nanoscale , 2016, 1608.05595.

[26]  G. Casati,et al.  Heat current rectification in segmented XXZ chains. , 2018, Physical review. E.

[27]  V. Giovannetti,et al.  Charger-mediated energy transfer in exactly solvable models for quantum batteries , 2018, Physical Review B.

[28]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[29]  Javier Prior,et al.  Realising a quantum absorption refrigerator with an atom-cavity system , 2016, 1603.02082.

[30]  J. Ankerhold,et al.  Rectification of heat currents across nonlinear quantum chains: a versatile approach beyond weak thermal contact , 2018, New Journal of Physics.

[31]  Ferdi Altintas,et al.  Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits , 2015 .

[32]  W. Pusz,et al.  Passive states and KMS states for general quantum systems , 1978 .

[33]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[34]  Jian-Sheng Wang,et al.  Generalized Gibbs state with modified Redfield solution: exact agreement up to second order. , 2012, The Journal of chemical physics.

[35]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[36]  Roberto S. Sarthour,et al.  Experimental Characterization of a Spin Quantum Heat Engine. , 2018, Physical review letters.

[37]  Gleb Maslennikov,et al.  Quantum absorption refrigerator with trapped ions , 2017, Nature Communications.

[38]  Valerio Scarani,et al.  Work production of quantum rotor engines , 2018, 1801.02820.

[39]  K. Hovhannisyan,et al.  Defining and generating current in open quantum systems , 2018, 1806.08779.

[40]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[41]  Jian-Sheng Wang,et al.  Reduced density matrix for nonequilibrium steady states: a modified Redfield solution approach. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  A. Aligia,et al.  Thermal transport in one-dimensional spin heterostructures , 2009, 0903.3671.

[43]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[44]  H. Choi,et al.  Charge frustration in a triangular triple quantum dot. , 2013, Physical review letters.

[45]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[46]  R. Haug,et al.  Two-path transport measurements on a triple quantum dot , 2007, 0707.2058.

[47]  M. Martínez-Pérez,et al.  Rectification of electronic heat current by a hybrid thermal diode. , 2014, Nature nanotechnology.

[48]  A. Wieck,et al.  A few-electron quadruple quantum dot in a closed loop , 2012, 1209.0733.

[49]  T. Brandes,et al.  Criticality in transport through the quantum Ising chain. , 2012, Physical review letters.

[50]  Clemens Bechinger,et al.  Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.

[51]  Abhishek Dhar,et al.  Out-of-equilibrium open quantum systems: A comparison of approximate quantum master equation approaches with exact results , 2015, 1511.03778.

[52]  John Goold,et al.  Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. , 2018, Physical review letters.

[53]  Jacob M. Taylor,et al.  An autonomous single-piston engine with a quantum rotor , 2018, Quantum Science and Technology.

[54]  D. Segal,et al.  Sufficient conditions for thermal rectification in hybrid quantum structures. , 2008, Physical review letters.

[55]  Jian-Sheng Wang,et al.  Reversal of Thermal Rectification in Quantum Systems , 2009, 0911.2526.

[56]  A. E. Allahverdyan,et al.  Maximal work extraction from finite quantum systems , 2004 .

[57]  A. Zettl,et al.  Solid-State Thermal Rectifier , 2006, Science.

[58]  J. B. Brask,et al.  Adding dynamical generators in quantum master equations , 2017, Physical Review A.

[59]  Á. Rivas,et al.  Topological Heat Transport and Symmetry-Protected Boson Currents , 2016, Scientific Reports.

[60]  D. Petrov,et al.  Brownian Carnot engine , 2014, Nature Physics.

[61]  Jian-Sheng Wang,et al.  Finite coupling effects in double quantum dots near equilibrium , 2016, 1610.00866.

[62]  Peter Hänggi,et al.  Single-atom energy-conversion device with a quantum load , 2018, 1812.01303.

[63]  Andrew G. Glen,et al.  APPL , 2001 .

[64]  Ian A. Walmsley,et al.  Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines. , 2017, Physical review letters.

[65]  Ronnie Kosloff,et al.  The local approach to quantum transport may violate the second law of thermodynamics , 2014, 1402.3825.

[66]  Alfred G. Redfield,et al.  On the Theory of Relaxation Processes , 1957, IBM J. Res. Dev..