Combinatorics of RNA Structures with Pseudoknots

Abstract In this paper, we derive the generating function of RNA structures with pseudoknots. We enumerate all k-noncrossing RNA pseudoknot structures categorized by their maximal sets of mutually intersecting arcs. In addition, we enumerate pseudoknot structures over circular RNA. For 3-noncrossing RNA structures and RNA secondary structures we present a novel 4-term recursion formula and a 2-term recursion, respectively. Furthermore, we enumerate for arbitrary k all k-noncrossing, restricted RNA structures i.e. k-noncrossing RNA structures without 2-arcs i.e. arcs of the form (i,i+2), for 1≤i≤n−2.

[1]  Michael S. Waterman,et al.  Spaces of RNA Secondary Structures , 1993 .

[2]  Luc Jaeger,et al.  RNA pseudoknots , 1992, Current Biology.

[3]  J. Powell Physics of biological systems: From molecules to species, by Henrik Flyvbjerg, John Hertz, Mogens H. Jensen, Ole G. Mouritsen, and Kim Sneppen , 1998 .

[4]  David Sankoff,et al.  RNA secondary structures and their prediction , 1984 .

[5]  Satoshi Kobayashi,et al.  Tree Adjoining Grammars for RNA Structure Prediction , 1999, Theor. Comput. Sci..

[6]  C. Pleij,et al.  Identification and analysis of the pseudoknot-containing gag-pro ribosomal frameshift signal of simian retrovirus-1. , 1994, Nucleic acids research.

[7]  Rosena R. X. Du,et al.  Crossings and nestings of matchings and partitions , 2005, math/0501230.

[8]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[9]  P. Schuster,et al.  Algorithm independent properties of RNA secondary structure predictions , 1996, European Biophysics Journal.

[10]  I. Gessel,et al.  Random walk in a Weyl chamber , 1992 .

[11]  David J. Grabiner,et al.  Random Walks in Weyl Chambers and the Decomposition of Tensor Powers , 1993 .

[12]  Michael S. Waterman,et al.  Linear Trees and RNA Secondary Structure , 1994, Discret. Appl. Math..

[13]  B. Lindström On the Vector Representations of Induced Matroids , 1973 .

[14]  Michael S. Waterman,et al.  COMPUTATION OF GENERATING FUNCTIONS FOR BIOLOGICAL MOLECULES , 1980 .

[15]  T. Pan,et al.  Domain structure of the ribozyme from eubacterial ribonuclease P. , 1996, RNA.

[16]  L. Gold,et al.  RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Michael S. Waterman,et al.  Combinatorics of RNA Hairpins and Cloverleaves , 1979 .

[18]  R. Gutell,et al.  A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. , 1995, RNA.

[19]  Sheila Sundaram,et al.  The Cauchy identity for Sp(2n) , 1990, J. Comb. Theory, Ser. A.

[20]  Christian N. S. Pedersen,et al.  Pseudoknots in RNA secondary structures , 2000, RECOMB '00.

[21]  P. Stadler,et al.  RNA structures with pseudo-knots: Graph-theoretical, combinatorial, and statistical properties , 1999, Bulletin of mathematical biology.

[22]  E Rivas,et al.  A dynamic programming algorithm for RNA structure prediction including pseudoknots. , 1998, Journal of molecular biology.

[23]  M. Waterman Secondary Structure of Single-Stranded Nucleic Acidst , 1978 .

[24]  Tatsuya Akutsu,et al.  Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots , 2000, Discret. Appl. Math..

[25]  P. Schuster,et al.  Statistics of RNA melting kinetics , 2004, European Biophysics Journal.

[26]  Temple F. Smith,et al.  Rapid dynamic programming algorithms for RNA secondary structure , 1986 .

[27]  Peter F. Stadler,et al.  Combinatorics of RNA Secondary Structures , 1998, Discret. Appl. Math..

[28]  H. Varmus,et al.  An RNA pseudoknot and an optimal heptameric shift site are required for highly efficient ribosomal frameshifting on a retroviral messenger RNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.