Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies

We consider a bi-dimensional sheet consisting of two orthogonal families of inextensible fibres. Using the representation due to Rivlin and Pipkin for admissible placements, i.e. placements preserving the lengths of the inextensible fibres, we numerically simulate a standard bias extension test on the sheet, solving a non-linear constrained optimization problem. Several first and second gradient deformation energy models are considered, depending on the shear angle between the fibres and on its gradient, and the results obtained are compared. The proposed numerical simulations will be helpful in designing a systematic experimental campaign aimed at characterizing the internal energy for physical realizations of the ideal pantographic structure presented in this paper.

[1]  A. Pipkin,et al.  Some developments in the theory of inextensible networks , 1980 .

[2]  Luca Placidi,et al.  A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model , 2016 .

[3]  P. Germain,et al.  The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure , 1973 .

[4]  A.P.S. Selvadurai,et al.  Torsion of a layered composite strip , 2013 .

[5]  Antonio Cazzani,et al.  Isogeometric analysis of plane-curved beams , 2016 .

[6]  J. Ganghoffer,et al.  Homogenized elastoplastic response of repetitive 2D lattice truss materials , 2014 .

[7]  J. Ganghoffer,et al.  Equivalent properties of monolayer fabric from mesoscopic modelling strategies , 2011 .

[8]  Tomasz Lekszycki,et al.  On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets , 2016 .

[9]  Ignacio Carol,et al.  Crack opening conditions at ‘corner nodes’ in FE analysis with cracking along mesh lines , 2007 .

[10]  H. Altenbach,et al.  Acceleration waves and ellipticity in thermoelastic micropolar media , 2010 .

[11]  R. Toupin,et al.  Theories of elasticity with couple-stress , 1964 .

[12]  A. Misra,et al.  Granular micromechanics based micromorphic model predicts frequency band gaps , 2015, Continuum Mechanics and Thermodynamics.

[13]  A. Misra,et al.  Higher-Order Stress-Strain Theory for Damage Modeling Implemented in an Element-free Galerkin Formulation , 2010 .

[14]  Ivan Giorgio,et al.  Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model , 2017 .

[15]  P. Boisse,et al.  Minimization of Shear Energy in Two Dimensional Continua with Two Orthogonal Families of Inextensible Fibers: The Case of Standard Bias Extension Test , 2016 .

[16]  Patrizio Neff,et al.  A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results , 2007 .

[17]  A. Pipkin,et al.  INEXTENSIBLE NETWORKS WITH BENDING STIFFNESS , 1986 .

[18]  Ivan Giorgio,et al.  Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials , 2014 .

[19]  A.P.S. Selvadurai,et al.  Transverse elasticity of a unidirectionally reinforced composite with an irregular fibre arrangement: Experiments, theory and computations , 2012 .

[20]  Y. Rahali,et al.  A micromechanical model of woven structures accounting for yarn–yarn contact based on Hertz theory and energy minimization , 2014 .

[21]  Yang Yang,et al.  Higher-Order Continuum Theory Applied to Fracture Simulation of Nanoscale Intergranular Glassy Film , 2011 .

[22]  Luca Placidi,et al.  A variational approach for a nonlinear 1-dimensional second gradient continuum damage model , 2015 .

[23]  Yang Yang,et al.  Micromechanical model for cohesive materials based upon pseudo-granular structure , 2010 .

[24]  Ivan Giorgio,et al.  Interfaces in micromorphic materials: Wave transmission and reflection with numerical simulations , 2016 .

[25]  A. Luongo A unified perturbation approach to static/dynamic coupled instabilities of nonlinear structures , 2010 .

[26]  Dionisio Del Vescovo,et al.  Dynamic problems for metamaterials: Review of existing models and ideas for further research , 2014 .

[27]  Emilio Turco,et al.  Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements , 2000 .

[28]  R. Rivlin Plane Strain of a Net Formed by Inextensible Cords , 1955 .

[29]  A. Pipkin,et al.  PLANE TRACTION PROBLEMS FOR INEXTENSIBLE NETWORKS , 1981 .

[30]  A. Misra,et al.  Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics , 2015 .

[31]  A. Misra,et al.  Micromechanical model for viscoelastic materials undergoing damage , 2013 .

[32]  Leopoldo Greco,et al.  A variational model based on isogeometric interpolation for the analysis of cracked bodies , 2014 .

[33]  Francesco dell’Isola,et al.  Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence , 2015 .

[34]  Francesco dell’Isola,et al.  Elastic pantographic 2 D lattices : a numerical analysis on the static response and wave propagation , 2015 .

[35]  R. D. Mindlin Second gradient of strain and surface-tension in linear elasticity , 1965 .

[36]  J. Altenbach,et al.  On generalized Cosserat-type theories of plates and shells: a short review and bibliography , 2010 .

[37]  A. Grillo,et al.  The linear elasticity tensor of incompressible materials , 2015 .

[38]  Alessandro Della Corte,et al.  Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof , 2015 .

[39]  Salvatore Federico,et al.  On the linear elasticity of porous materials , 2010 .

[40]  Luca Placidi,et al.  Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps , 2013, 1309.1722.

[41]  Francesco dell’Isola,et al.  Elastne kahemõõtmeline pantograafiline võre: Numbriline analüüs staatilisest tagasisidest ja lainelevist , 2015 .

[42]  S. Forest Mechanics of generalized continua: construction by homogenizaton , 1998 .

[43]  Ugo Andreaus,et al.  Soft-impact dynamics of deformable bodies , 2013 .

[44]  Andreas Öchsner,et al.  Universal transmission conditions for thin reactive heat-conducting interphases , 2013 .

[45]  Luca Placidi,et al.  A microscale second gradient approximation of the damage parameter of quasi‐brittle heterogeneous lattices , 2014 .

[46]  J. Ganghoffer,et al.  Construction of micropolar continua from the asymptotic homogenization of beam lattices , 2012 .

[47]  Philippe Boisse,et al.  Composite reinforcements for optimum performance , 2012 .

[48]  Jean-François Ganghoffer,et al.  Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization , 2013 .

[49]  J. Ganghoffer,et al.  Equivalent mechanical properties of auxetic lattices from discrete homogenization , 2012 .

[50]  Flavio Stochino,et al.  Constitutive models for strongly curved beams in the frame of isogeometric analysis , 2016 .

[51]  Ivan Giorgio,et al.  Modeling of the interaction between bone tissue and resorbable biomaterial as linear elastic materials with voids , 2015 .

[52]  F. Darve,et al.  A simple non-linear model for internal friction in modified concrete , 2014 .

[53]  Francesco dell’Isola,et al.  Plane bias extension test for a continuum with two inextensible families of fibers: A variational treatment with Lagrange multipliers and a perturbation solution , 2016 .

[54]  Ivan Giorgio,et al.  The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids , 2016 .

[55]  Ivan Giorgio,et al.  Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations , 2016 .

[56]  Ivan Giorgio,et al.  A micro‐structural model for dissipation phenomena in the concrete , 2015 .

[57]  A. Eringen,et al.  THEORY OF MICROPOLAR FLUIDS , 1966 .

[58]  Francesco dell’Isola,et al.  A Two-Dimensional Gradient-Elasticity Theory for Woven Fabrics , 2015 .

[59]  F. dell’Isola,et al.  Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  Francesco dell’Isola,et al.  Variational models and methods in solid and fluid mechanics , 2012 .

[61]  Ugo Andreaus,et al.  At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola , 2013, 1310.5599.

[62]  Luca Placidi,et al.  A unifying perspective: the relaxed linear micromorphic continuum , 2013, Continuum Mechanics and Thermodynamics.

[63]  R. D. Mindlin Micro-structure in linear elasticity , 1964 .

[64]  Antonio Cazzani,et al.  Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches , 2016 .

[65]  Jean-François Ganghoffer,et al.  Computer-Aided Tissue Engineering: Application to the Case of Anterior Cruciate Ligament Repair , 2013 .

[66]  A. Selvadurai On the Surface Displacement of an Isotropic Elastic Halfspace Containing an Inextensible Membrane Reinforcement , 2009 .

[67]  A.P.S. Selvadurai,et al.  Concentrated loading of a fibre-reinforced composite plate: Experimental and computational modeling of boundary fixity , 2014 .

[68]  A. Pipkin,et al.  Plane deformations of nets with bending stiffness , 1987 .

[69]  Claude Boutin,et al.  Microstructural effects in elastic composites , 1996 .

[70]  Francesco dell’Isola,et al.  Variational principles are a powerful tool also for formulating field theories , 2011 .

[71]  Philippe Boisse,et al.  Locking in simulation of composite reinforcement deformations. Analysis and treatment , 2013 .

[72]  Pierre Seppecher,et al.  Truss Modular Beams with Deformation Energy Depending on Higher Displacement Gradients , 2003 .

[73]  Ignacio Carol,et al.  On inter‐element forces in the FEM‐displacement formulation, and implications for stress recovery , 2006 .

[74]  S Belouettar,et al.  A micropolar anisotropic constitutive model of cancellous bone from discrete homogenization. , 2012, Journal of the mechanical behavior of biomedical materials.