Sulfate reduction and inorganic carbon assimilation in acidic thermal springs of the Kamchatka peninsula
暂无分享,去创建一个
[1] T. Kunisawa. Evolutionary relationships of completely sequenced Clostridia species and close relatives. , 2015, International journal of systematic and evolutionary microbiology.
[2] M. Moran,et al. Microbial life in Bourlyashchy, the hottest thermal pool of Uzon Caldera, Kamchatka , 2015, Extremophiles.
[3] T. Tourova,et al. Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal , 2014, Microbiology.
[4] Koichiro Tamura,et al. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. , 2013, Molecular biology and evolution.
[5] K. Makarova,et al. The Complete Genome Sequence of Thermoproteus tenax: A Physiologically Versatile Member of the Crenarchaeota , 2011, PloS one.
[6] N. Ravin,et al. Complete Genome Sequence of the Thermoacidophilic Crenarchaeon Thermoproteus uzoniensis 768-20 , 2011, Journal of bacteriology.
[7] N. Ravin,et al. Complete Genome Sequence of “Vulcanisaeta moutnovskia” Strain 768-28, a Novel Member of the Hyperthermophilic Crenarchaeal Genus Vulcanisaeta , 2011, Journal of bacteriology.
[8] B. Ollivier,et al. Desulfosporosinus acidiphilus sp. nov.: a moderately acidophilic sulfate-reducing bacterium isolated from acid mining drainage sediments , 2010, Extremophiles.
[9] A. Stams,et al. The ecology and biotechnology of sulphate-reducing bacteria , 2008, Nature Reviews Microbiology.
[10] M. Koschorreck. Microbial sulphate reduction at a low pH. , 2008, FEMS microbiology ecology.
[11] S. Spring,et al. Cultivated anaerobic acidophilic/acidotolerant thermophiles from terrestrial and deep-sea hydrothermal habitats , 2005, Extremophiles.
[12] A. Roychoudhury. Sulfate Respiration in Extreme Environments: A Kinetic Study , 2004 .
[13] D. Stahl,et al. Linkage of High Rates of Sulfate Reduction in Yellowstone Hot Springs to Unique Sequence Types in the Dissimilatory Sulfate Respiration Pathway , 2003, Applied and Environmental Microbiology.
[14] S. Hanada,et al. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring , 2003, Extremophiles.
[15] E. Casamayor,et al. Identification of and Spatio-Temporal Differences between Microbial Assemblages from Two Neighboring Sulfurous Lakes: Comparison by Microscopy and Denaturing Gradient Gel Electrophoresis , 2000, Applied and Environmental Microbiology.
[16] K. Suzuki,et al. Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. , 1999, International journal of systematic bacteriology.
[17] Oliver J. Hao,et al. Sulfate‐reducing bacteria , 1996 .
[18] M. Nei,et al. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.
[19] A. Uitterlinden,et al. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.
[20] T. E. Thompson,et al. Microbial Ecology of Volcanic Sulphidogenesis: Isolation and Characterization of Thermodesulfobacterium commune gen. nov. and sp. nov., , 1983 .
[21] W. Zillig,et al. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria , 1983, Nature.
[22] W. Zillig,et al. Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras , 1981 .
[23] R. E. Hungate,et al. The Roll-Tube Method for Cultivation of Strict Anaerobes , 1972 .
[24] R. Wolfe,et al. FORMATION OF METHANE BY BACTERIAL EXTRACTS. , 1963, The Journal of biological chemistry.
[25] A. Stams,et al. Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments , 2014, Extremophiles.
[26] E. Bonch‐Osmolovskaya,et al. 2 In Situ Activity Studies in Thermal Environments , 2006 .
[27] H. G. Trüper,et al. Sulphur metabolism in Thiorhodaceae I. Quantitative measurements on growing cells ofChromatium okenii , 2005, Antonie van Leeuwenhoek.
[28] E. Bonch‐Osmolovskaya,et al. Desulfurella acetivorans gen. nov. and sp. nov. —a new thermophilic sulfur-reducing eubacterium , 2004, Archives of Microbiology.
[29] F. Widdel,et al. Microbiology and ecology of sulfate-and sulfur-reducing bacteria , 1988 .
[30] R. E. Hungate. Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes , 1969 .