Bathymetry Retrieval From Hyperspectral Remote Sensing Data in Optical-Shallow Water

In this paper, an algorithm for estimating shallow-water depth from hyperspectral data is proposed. This methodology is based on the different responses of shallow-water reflectance on depth and substrate type. Two parameters-similarity coefficient and Pearson correlation coefficient-are introduced to describe the different types of responses, and a linear logarithm ratio model is established. Using Hyperion data over the coastal regions of O'Ahu Island and Saint Thomas Island, the retrieved bathymetry is compared with the airborne LIDAR data. The validation results show that the proposed method has good performance, and the root mean square error is less than 1.5 m over shallow water (shallower than 20 m).

[1]  Alexander Berk,et al.  Remote bathymetry of the littoral zone from AVIRIS, LASH, and QuickBird imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[2]  David R. Lyzenga,et al.  Shallow-water bathymetry using combined lidar and passive multispectral scanner data , 1985 .

[3]  R. C. Olsen Depth analysis of Midway Atoll using Quickbird multi-spectral imaging over variable substrates , 2005 .

[4]  D. Lyzenga Remote sensing of bottom reflectance and water attenuation parameters in shallow water using aircraft and Landsat data , 1981 .

[5]  Charles H. Fletcher,et al.  Decorrelating remote sensing color bands from bathymetry in optically shallow waters , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Marcos J. Montes,et al.  Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform , 2007 .

[7]  Stuart R. Phinn,et al.  Multi-site evaluation of IKONOS data for classification of tropical coral reef environments , 2003 .

[8]  Jaan Praks,et al.  A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal , 2009 .

[9]  Stephen G. Ungar,et al.  Overview of the Earth Observing One (EO-1) mission , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Lieven Clarisse,et al.  A correlation method for volcanic ash detection using hyperspectral infrared measurements , 2010 .

[11]  Hanqiu Xu Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery , 2006 .

[12]  R. Holyer,et al.  Coastal bathymetry from hyperspectral observations of water radiance , 1998 .

[13]  Trijntje Valerie Downes,et al.  Interpretation of hyperspectral remote-sensing imagery by spectrum matching and look-up tables. , 2005, Applied optics.

[14]  Ellsworth F. LeDrew,et al.  Measuring and modeling water column effects on hyperspectral reflectance in a coral reef environment , 2002 .

[15]  James A. Goodman,et al.  Classification of benthic composition in a coral reef environment using spectral unmixing , 2007 .

[16]  Wei Li,et al.  Spectral Signatures of Coral Reefs: Features from Space , 2001 .

[17]  Claudia Giardino,et al.  Recent changes in macrophyte colonisation patterns: an imaging spectrometry-based evaluation of southern Lake Garda (northern Italy) , 2007 .

[18]  Wojciech M. Klonowski,et al.  Retrieving key benthic cover types and bathymetry from hyperspectral imagery , 2007 .

[19]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. I. A semianalytical model. , 1998, Applied optics.

[20]  C. Mobley,et al.  Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization. , 1999, Applied optics.

[21]  D. Lyzenga Passive remote sensing techniques for mapping water depth and bottom features. , 1978, Applied optics.

[22]  C. L. Walker,et al.  Bathymetry calculations with Landsat 4 TM imagery under a generalized ratio assumption. , 1987, Applied optics.

[23]  Virginie Lafon,et al.  SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements , 2002 .

[24]  R. Stumpf,et al.  Determination of water depth with high‐resolution satellite imagery over variable bottom types , 2003 .

[25]  Michael J. Loomis Depth Derivation from the Worldview-2 Satellite Using Hyperspectral Imagery , 2009 .

[26]  K. Carder,et al.  Coastal Bathymetry from Hyperspectral Remote Sensing Data: Comparisons with High Resolution Multibeam Bathymetry , 2006 .

[27]  R. Parsons,et al.  Bathymetry of shallow coastal regions derived from space-borne hyperspectral sensor , 2005, Proceedings of OCEANS 2005 MTS/IEEE.

[28]  Robert F. Chen,et al.  Properties of the Water Column and Bottom Derived from Airborne Visible Infrared Imaging Spectrometer (AVIRIS) Data , 2001 .

[29]  Bokun Yan,et al.  Atmospheric correction of hyperspectral data using MODTRAN model , 2008, China Symposium on Remote Sensing.

[30]  A. H. Benny,et al.  Satellite Imagery as an Aid to Bathymetric Charting in the Red Sea , 1983 .

[31]  W. Philpot,et al.  Bathymetric mapping with passive multispectral imagery. , 1989, Applied Optics.

[32]  Chris Roelfsema,et al.  The effects of ecologically determined spatial complexity on the classification accuracy of simulated coral reef images , 2009 .

[33]  Chris Roelfsema,et al.  A physics based retrieval and quality assessment of bathymetry from suboptimal hyperspectral data , 2009 .

[34]  Fred J. Tanis,et al.  Multispectral bathymetry using a simple physically based algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.