An efficient level set method based on global statistical information for image segmentation

[1]  Chunming Li,et al.  Distance Regularized Level Set Evolution and Its Application to Image Segmentation , 2010, IEEE Transactions on Image Processing.

[2]  Lei Zhang,et al.  Active contours driven by local image fitting energy , 2010, Pattern Recognit..

[3]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[4]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[6]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[7]  Chunming Li,et al.  Minimization of Region-Scalable Fitting Energy for Image Segmentation , 2008, IEEE Transactions on Image Processing.

[8]  Patrick J. Flynn,et al.  The 20th Anniversary of the IEEE Transactions on Pattern Analysis and Machine Intelligence , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Yufei Chen,et al.  Region scalable active contour model with global constraint , 2017, Knowl. Based Syst..

[10]  F. Santosa,et al.  A topology-preserving level set method for shape optimization , 2004, math/0405142.

[11]  Caiming Zhang,et al.  A Robust Active Contour Segmentation Based on Fractional-Order Differentiation and Fuzzy Energy , 2017, IEEE Access.

[12]  Ashish Ghosh,et al.  Robust global and local fuzzy energy based active contour for image segmentation , 2016, Appl. Soft Comput..

[13]  Lei Wang,et al.  Simultaneous segmentation and bias field estimation using local fitted images , 2018, Pattern Recognit..

[14]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[15]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[16]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[17]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[18]  Dazhe Zhao,et al.  Image segmentation and bias correction using local inhomogeneous iNtensity clustering (LINC): A region-based level set method , 2017, Neurocomputing.

[19]  Rachid Deriche,et al.  Geodesic Active Regions and Level Set Methods for Supervised Texture Segmentation , 2002, International Journal of Computer Vision.

[20]  Lei Zhang,et al.  Active contours with selective local or global segmentation: A new formulation and level set method , 2010, Image Vis. Comput..