Internet Multimedia Search and Mining

Abstract: In this chapter we will present an overview of data fusion , and how it can beapplied to the task of internet multimedia search, specifically content-based multimediasearch. This chapter will primairly be focused on the weighted combination of rankedresults from different retrieval experts, to formulate a final ranking for some given content-based information need. The types of data under examination in this chapter are low-level multimedia features, such as colour histograms, edge detection etc. This chapterwill examine the key attributes which impact upon data fusion, and through an empiricalinvestigation present the best formulations that should be used when implementing datafusion. Furthermore this chapter conducts a review of current approaches to handlingthe generation of weights for data fusion, including query-class approaches, discriminativeclassification and relevance feedback. Introduction The availability of information resources on the internet has ushered in the ‘Web 2.0’phenomenon, spearheaded by websites which are ‘mashups’. These are websites whichcombine forms of data from multiple external sources in order to fulfill some form ofinformation need. Often these forms of data will be multimedia, and allow for the creationof rich, informative sources of information. In many ways, the ‘mashup’ can be seen as anextension of an earlier web phenomenon, the meta-search engine which still exists today,as seen in a search service such as ‘dogpile.com’. The meta-search engine takes in a singleinformation query and combines the outputs of multiple other external search services toformulate a single response to that query. Both of these tasks are executing an operationknown as

[1]  Richard Bellman,et al.  Adaptive Control Processes: A Guided Tour , 1961, The Mathematical Gazette.

[2]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[3]  Michael McGill,et al.  An Evaluation of Factors Affecting Document Ranking by Information Retrieval Systems. , 1979 .

[4]  Jeffrey Katzer,et al.  A study of the overlap among document representations , 1983, SIGIR '83.

[5]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[6]  Paul B. Kantor,et al.  A Study of Information Seeking and Retrieving. III. Searchers, Searches, and Overlap* , 1988 .

[7]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[8]  E. A. Fox,et al.  Combining the Evidence of Multiple Query Representations for Information Retrieval , 1995, Inf. Process. Manag..

[9]  Ellen M. Voorhees,et al.  Learning collection fusion strategies , 1995, SIGIR '95.

[10]  Jong-Hak Lee,et al.  Analyses of multiple evidence combination , 1997, SIGIR '97.

[11]  Thomas S. Huang,et al.  Content-based image retrieval with relevance feedback in MARS , 1997, Proceedings of International Conference on Image Processing.

[12]  Gregory D. Abowd,et al.  Teaching and learning as multimedia authoring: the classroom 2000 project , 1997, MULTIMEDIA '96.

[13]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[14]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[15]  Brian Christopher Smith,et al.  Passive capture and structuring of lectures , 1999, MULTIMEDIA '99.

[16]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[17]  Ronald Fagin,et al.  Combining Fuzzy Information from Multiple Systems , 1999, J. Comput. Syst. Sci..

[18]  Byung-Tae Chun,et al.  An effective method for combining multiple features of image retrieval , 1999, Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030).

[19]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Tanveer F. Syeda-Mahmood Indexing for topics in videos using foils , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[21]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[22]  Qi Tian,et al.  Incorporate support vector machines to content-based image retrieval with relevance feedback , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[23]  Javed A. Aslam,et al.  Relevance score normalization for metasearch , 2001, CIKM '01.

[24]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[25]  P. Beek,et al.  Text of 15938-5 FCD Information Technology-Multimedia Content Description Interface-Pard 5 Multimedia Description Schemes , 2001 .

[26]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[27]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[28]  Ophir Frieder,et al.  System fusion for improving performance in information retrieval systems , 2001, Proceedings International Conference on Information Technology: Coding and Computing.

[29]  B. S. Manjunath,et al.  Introduction to MPEG-7: Multimedia Content Description Interface , 2002 .

[30]  W. Bruce Croft,et al.  Predicting query performance , 2002, SIGIR '02.

[31]  John R. Kender,et al.  Analysis and enhancement of videos of electronic slide presentations , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[32]  W. Bruce Croft Combining Approaches to Information Retrieval , 2002 .

[33]  Rong Yan,et al.  The combination limit in multimedia retrieval , 2003, MULTIMEDIA '03.

[34]  James C. French,et al.  Improving image retrieval effectiveness via multiple queries , 2003, MMDB.

[35]  Chong-Wah Ngo,et al.  Synchronization of lecture videos and electronic slides by video text analysis , 2003, MULTIMEDIA '03.

[36]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[37]  Wei Jyh Heng,et al.  Automatic synchronization of speech transcript and slides in presentation , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[38]  Umberto Straccia,et al.  Web metasearch: rank vs. score based rank aggregation methods , 2003, SAC '03.

[39]  Berna Erol,et al.  Linking multimedia presentations with their symbolic source documents: algorithm and applications , 2003, ACM Multimedia.

[40]  Rong Yan,et al.  Learning query-class dependent weights in automatic video retrieval , 2004, MULTIMEDIA '04.

[41]  Denis Lalanne,et al.  Looking at projected documents: event detection & document identification , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[42]  Stephen Kwek,et al.  Applying Support Vector Machines to Imbalanced Datasets , 2004, ECML.

[43]  Garrison W. Cottrell,et al.  Fusion Via a Linear Combination of Scores , 1999, Information Retrieval.

[44]  Ophir Frieder,et al.  Fusion of effective retrieval strategies in the same information retrieval system , 2004, J. Assoc. Inf. Sci. Technol..

[45]  Arnon Amir,et al.  Automatic generation of conference video proceedings , 2004, J. Vis. Commun. Image Represent..

[46]  Gang Wang,et al.  TRECVID 2004 Search and Feature Extraction Task by NUS PRIS , 2004, TRECVID.

[47]  Kaizhu Huang,et al.  Biased support vector machine for relevance feedback in image retrieval , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[48]  Alan F. Smeaton,et al.  TRECVID 2004 Experiments in Dublin City University , 2004, TRECVID.

[49]  Milind R. Naphade,et al.  Learning the semantics of multimedia queries and concepts from a small number of examples , 2005, MULTIMEDIA '05.

[50]  Alan F. Smeaton,et al.  A Comparison of Score, Rank and Probability-Based Fusion Methods for Video Shot Retrieval , 2005, CIVR.

[51]  Marcel Worring,et al.  Multimedia Event-Based Video Indexing: A Review of the State-of-the-art , 2005 .

[52]  Cees G. M. Snoek,et al.  Early versus late fusion in semantic video analysis , 2005, MULTIMEDIA '05.

[53]  Yong Rui,et al.  An automated end-to-end lecture capturing and broadcasting system , 2005, MULTIMEDIA '05.

[54]  Shih-Fu Chang,et al.  Automatic discovery of query-class-dependent models for multimodal search , 2005, MULTIMEDIA '05.

[55]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[56]  Quanfu Fan,et al.  Matching slides to presentation videos using SIFT and scene background matching , 2006, MIR '06.

[57]  W. Bruce Croft,et al.  Linear feature-based models for information retrieval , 2007, Information Retrieval.

[58]  Shih-Fu Chang,et al.  To search or to label?: predicting the performance of search-based automatic image classifiers , 2006, MIR '06.

[59]  I. E. Allen,et al.  Making the Grade: Online Education in the United States, 2006. , 2006 .

[60]  Rong Yan,et al.  Probabilistic latent query analysis for combining multiple retrieval sources , 2006, SIGIR.

[61]  Multimedia Retrieval (Data-Centric Systems and Applications) , 2007 .

[62]  Andrew D. Miller,et al.  Give and take: a study of consumer photo-sharing culture and practice , 2007, CHI.

[63]  Kristina Lerman,et al.  Social Browsing on Flickr , 2006, ICWSM.

[64]  Allan Hanbury,et al.  Overview of the ImageCLEFphoto 2007 Photographic Retrieval Task , 2008, CLEF.

[65]  Apostol Natsev,et al.  Dynamic Multimodal Fusion in Video Search , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[66]  Stephen E. Robertson,et al.  On Score Distributions and Relevance , 2007, ECIR.

[67]  Roelof van Zwol,et al.  Author Index , 2007, Web Intelligence.

[68]  Stéphane Marchand-Maillet,et al.  Information Fusion in Multimedia Information Retrieval , 2007, Adaptive Multimedia Retrieval.

[69]  Mor Naaman,et al.  Why we tag: motivations for annotation in mobile and online media , 2007, CHI.

[70]  John R. Smith,et al.  Data Modeling Strategies for Imbalanced Learning in Visual Search , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[71]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[72]  Quanfu Fan,et al.  Temporal Modeling of Slide Change in Presentation Videos , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[73]  Anil Kokaram,et al.  Electronic slide matching and enhancement of a lecture video , 2007 .

[74]  Nancy A. Van House,et al.  Flickr and public image-sharing: distant closeness and photo exhibition , 2007, CHI Extended Abstracts.

[75]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[76]  Wei Liu,et al.  Relevance aggregation projections for image retrieval , 2008, CIVR '08.

[77]  Ja-Ling Wu,et al.  SheepDog: group and tag recommendation for flickr photos by automatic search-based learning , 2008, ACM Multimedia.

[78]  Dominique Cardon,et al.  The Stength of Weak cooperation: A Case Study on Flickr , 2008, ArXiv.

[79]  Marcus Liwicki,et al.  Recognition of Whiteboard Notes - Online, Offline and Combination , 2008, Series in Machine Perception and Artificial Intelligence.

[80]  Daniel Gatica-Perez,et al.  Topickr: flickr groups and users reloaded , 2008, ACM Multimedia.

[81]  Oded Nov,et al.  What drives content tagging: the case of photos on Flickr , 2008, CHI.

[82]  Daniel Gatica-Perez,et al.  Analyzing Flickr groups , 2008, CIVR '08.

[83]  Kristina Lerman,et al.  Constructing folksonomies from user-specified relations on flickr , 2009, WWW '09.

[84]  Dinh Q. Phung,et al.  Flickr hypergroups , 2009, ACM Multimedia.

[85]  Munmun De Choudhury,et al.  Temporal patterns in social media streams: Theme discovery and evolution using joint analysis of content and context , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[86]  Ingmar Weber,et al.  Camera brand congruence in the Flickr social graph , 2009, WSDM '09.

[87]  Munmun De Choudhury,et al.  Connecting content to community in social media via image content, user tags and user communication , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[88]  Mohan S. Kankanhalli,et al.  Robust Alignment of Presentation Videos with Slides , 2009, PCM.

[89]  Munmun De Choudhury Modeling and predicting group activity over time in online social media , 2009, HT '09.

[90]  Peter A. Gloor,et al.  Deriving Taxonomies from Automatic Analysis of Group Membership Structure in Large Social Networks , 2009, GI Jahrestagung.

[91]  Quanfu Fan,et al.  Studying on the Move - Enriched Presentation Video for Mobile Devices , 2009, IEEE INFOCOM Workshops 2009.

[92]  Quanfu Fan,et al.  Accurate alignment of presentation slides with educational video , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[93]  Gang Wang,et al.  Learning image similarity from Flickr groups using Stochastic Intersection Kernel MAchines , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[94]  John R. Smith,et al.  IBM Research TRECVID-2009 Video Retrieval System , 2009, TRECVID.

[95]  Daniel Gatica-Perez,et al.  Modeling Flickr Communities Through Probabilistic Topic-Based Analysis , 2010, IEEE Transactions on Multimedia.

[96]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[97]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .