Nature of charge density waves and superconductivity in 1 T − TaSe 2 − x Te x

Transition-metal dichalcogenides (TMDs) $M{X}_{2}$ $(M=\text{Ti},\text{Nb},\text{Ta};X=\text{S},\text{Se},\text{Te})$ exhibit a rich set of charge density wave (CDW) orders, which usually coexist and/or compete with superconductivity. The mechanisms of CDWs and superconductivity in TMDs are still under debate. Here we perform an investigation on a typical TMD system, $1T\text{\ensuremath{-}}{\mathrm{TaSe}}_{2\ensuremath{-}x}{\mathrm{Te}}_{x}$ $(0\ensuremath{\le}x\ensuremath{\le}2)$. Doping-induced disordered distribution of Se/Te suppresses CDWs in $1T\text{\ensuremath{-}}{\mathrm{TaSe}}_{2}$. A domelike superconducting phase with the maximum ${T}_{\mathrm{c}}^{\mathrm{onset}}$ of 2.5 K was observed near CDWs. The superconducting volume is very small inside the CDW phase and becomes very large instantly when the CDW phase is fully suppressed. The observations can be understood based on the strong $q$-dependent electron-phonon coupling-induced periodic-lattice-distortion (PLD) mechanism of CDWs. The volume variation of superconductivity implies the emergence of domain walls in the suppressing process of CDWs. Our concluded scenario makes a fundamental understanding about CDWs and related superconductivity in TMDs.

[1]  H. Tian,et al.  Direct observation of an optically induced charge density wave transition in 1T-TaSe2 , 2015 .

[2]  Huixia Luo,et al.  Polytypism, polymorphism, and superconductivity in TaSe2−xTex , 2015, Proceedings of the National Academy of Sciences.

[3]  S. Louie,et al.  Classification of charge density waves based on their nature , 2015, Proceedings of the National Academy of Sciences.

[4]  Y. Sun,et al.  Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides , 2015, Nature Communications.

[5]  S. Cheong,et al.  Gate-tunable phase transitions in thin flakes of 1T-TaS2. , 2014, Nature nanotechnology.

[6]  R. Ang,et al.  Superconductivity and bandwidth-controlled Mott metal-insulator transition in 1T-TaS2−xSex , 2013 .

[7]  J. C. Lee,et al.  Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2 , 2013, Nature Physics.

[8]  Wenli Song,et al.  Superconductivity induced by Se-doping in layered charge-density-wave system 1T-TaS2−xSex , 2013 .

[9]  M. Calandra,et al.  Charge-Density Wave and Superconducting Dome in TiSe$_2$ from Electron- Phonon Interaction , 2013 .

[10]  Y. Sun,et al.  Real-space coexistence of the melted Mott state and superconductivity in Fe-substituted 1T-TaS2. , 2012, Physical review letters.

[11]  A. Liu,et al.  Effect of dimensionality and spin-orbit coupling on charge-density-wave transition in 2H-TaSe 2 , 2012 .

[12]  Y. Sun,et al.  Fe-doping–induced superconductivity in the charge-density-wave system 1T-Tas2 , 2011, 1109.3962.

[13]  R. Cava,et al.  Multiple electronic transitions and superconductivity in Pd x TiSe 2 , 2010 .

[14]  A. Liu Electron-phonon coupling in compressed 1 T -TaS 2 : Stability and superconductivity from first principles , 2009 .

[15]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  L. Forró,et al.  From Mott state to superconductivity in 1T-TaS2. , 2008, Nature materials.

[17]  A. Williams,et al.  Tuning the charge density wave and superconductivity in Cu x TaS 2 , 2008, 0808.2147.

[18]  S. Y. Li,et al.  Single-gap s-Wave superconductivity near the charge-density-wave quantum critical point in CuxTiSe2. , 2007, Physical review letters.

[19]  I. I. Mazin,et al.  Fermi surface nesting and the origin of charge density waves in metals , 2007, 0708.1744.

[20]  S. Y. Li,et al.  Single-gap s-wave superconductivity in Cu$_x$TiSe$_2$ , 2007, cond-mat/0701669.

[21]  M. Johannes,et al.  Fermi-surface nesting and the origin of the charge-density wave inNbSe2 , 2005, cond-mat/0510390.

[22]  H. Berger,et al.  Pseudogapped Fermi surfaces of 1T-TaS2 and 1T-TaSe2: A charge density wave effect , 2004 .

[23]  B. Johansson,et al.  Stabilization of charge-density waves in 1T-TaX2 (X=S,Se,Te): first-principles total energy calculations , 2002 .

[24]  V. Sidorov,et al.  Superconductivity and quantum criticality in CeCoIn5. , 2002, Physical review letters.

[25]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[26]  J. D. Johnson,et al.  Critical Doping in Overdoped High-Tc Superconductors: a Quantum Critical Point? , 1999, cond-mat/9911157.

[27]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[28]  A. Freeman,et al.  Generalized electronic susceptibility and charge-density waves in 1T-TaS2 and 1T-TaSe2 , 1977 .

[29]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[30]  J. Wilson,et al.  Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides , 1975 .

[31]  Volker Heine,et al.  Spin density wave and soft phonon mode from nesting Fermi surfaces , 1973 .

[32]  H. Fröhlich On the theory of superconductivity: the one-dimensional case , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[33]  P. Canfield,et al.  Superconductivity: A Case Study of the Effects of Transition Metal Doping , 2010 .

[34]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[35]  L. Forró,et al.  Pressure induced superconductivity in pristine 1T-TiSe2. , 2009, Physical review letters.