Kinetic and mechanistic aspects of metallocene polymerisation catalysts

[1]  M. Bochmann,et al.  The kinetics of propene and hexene polymerisation with [(SBI)ZrR]+X-: evidence for monomer-dependent early or late transition states. , 2004, Chemical communications.

[2]  M. Bochmann,et al.  Anion Effects on the Activity and Stereoselectivity in Propene Polymerisations Catalyzed by C2-Symmetric and “Oscillating” Catalysts , 2004 .

[3]  T. Marks,et al.  NOE and PGSE NMR spectroscopic studies of solution structure and aggregation in metallocenium ion-pairs. , 2004, Journal of the American Chemical Society.

[4]  R. Waymouth,et al.  Heterogeneous Composition and Microstructure of Elastomeric Polypropylene from a Sterically Hindered 2-Arylindenylhafnium Catalyst , 2004 .

[5]  K. Vanka,et al.  Influence of the counterion MeB(C6F5)3- and solvent effects on ethylene polymerization catalyzed by [(CpSiMe2NR)TiMe]+: A combined density functional theory and molecular mechanism study , 2004 .

[6]  E. P. Talsi,et al.  1H and 13C NMR Spectroscopic Study of Titanium(IV) Species Formed by Activation of Cp2TiCl2 and [(Me4C5)SiMe2NtBu]TiCl2 with Methylaluminoxane (MAO) , 2004 .

[7]  E. P. Talsi,et al.  13C-NMR study of Ti(IV) species formed by Cp*TiMe3 and Cp*TiCl3 activation with methylaluminoxane (MAO) , 2003 .

[8]  E. Rytter,et al.  1H-, 13C-NMR and ethylene polymerization studies of zirconocene/MAO catalysts: effect of the ligand structure on the formation of active intermediates and polymerization kinetics , 2003 .

[9]  C. Landis,et al.  Catalytic propene polymerization: determination of propagation, termination, and epimerization kinetics by direct NMR observation of the (EBI)Zr(MeB(C6F5)3)propenyl catalyst species. , 2003, Journal of the American Chemical Society.

[10]  M. Nele,et al.  Counterion effects on propylene polymerization using two-state ansa-metallocene complexes. , 2003, Journal of the American Chemical Society.

[11]  M. Bochmann,et al.  Zirconocene-catalyzed propene polymerization: a quenched-flow kinetic study. , 2003, Journal of the American Chemical Society.

[12]  V. Busico,et al.  Metallocene-Catalyzed Propene Polymerization: From Microstructure to Kinetics. Cs-Symmetric ansa-Zirconocenes , 2003 .

[13]  A. Segre,et al.  "Oscillating" metallocene catalysts: what stops the oscillation? , 2003, Journal of the American Chemical Society.

[14]  T. Marks,et al.  Metallocene polymerization catalyst ion-pair aggregation by cryoscopy and pulsed field gradient spin-echo NMR diffusion measurements. , 2003, Journal of the American Chemical Society.

[15]  E. Rytter,et al.  1H and 13C NMR Study of the Intermediates Formed by (Cp‐R)2ZrCl2 Activation with MAO and AlMe3/[CPh3][B(C6F5)4]. Correlation of Spectroscopic and Ethene Polymerization Data , 2003 .

[16]  M. C. Baird Catalysis by organotransition metal compounds: Synergism between the pure and the applied1 , 2003 .

[17]  C. Landis,et al.  Direct observation of insertion events at rac-(C2H4(1-indenyl)2)Zr(MeB(C6F5)3)-polymeryl intermediates: distinction between continuous and intermittent propagation modes. , 2003, Journal of the American Chemical Society.

[18]  H. Brintzinger,et al.  Activation of dimethyl zirconocene by methylaluminoxane (MAO)-size estimate for Me-MAO(-) anions by pulsed field-gradient NMR. , 2002, Journal of the American Chemical Society.

[19]  J. Uddin,et al.  Heavy-atom kinetic isotope effects, cocatalysts, and the propagation transition state for polymerization of 1-hexene using the rac-(C(2)H(4)(1-indenyl)(2))ZrMe(2) catalyst precursor. , 2002, Journal of the American Chemical Society.

[20]  R. Waymouth,et al.  Influence of cocatalyst on the stereoselectivity of unbridged 2-phenylindenyl metallocene catalysts , 2002 .

[21]  J. Bercaw,et al.  Chain epimerization during propylene polymerization with metallocene catalysts: mechanistic studies using a doubly labeled propylene. , 2002, Journal of the American Chemical Society.

[22]  G. Talarico,et al.  "Oscillating" metallocene catalysts: how do they oscillate? , 2002, Angewandte Chemie.

[23]  H. Brintzinger,et al.  Displacement of H3CB(C6F5)3- Anions from Zirconocene Methyl Cations by Neutral Ligand Molecules: Equilibria, Kinetics, and Mechanisms , 2002 .

[24]  A. Lara‐Sánchez,et al.  [H2N{B(C6F5)3}2]-: A New, Remarkably Stable Diborate Anion for Metallocene Polymerization Catalysts , 2002 .

[25]  A. Hult,et al.  The effect of degree of branching on the rheological and thermal properties of hyperbranched aliphatic polyethers , 2002 .

[26]  T. Marks,et al.  Strong ion pairing effects on single-site olefin polymerization: mechanistic insights in syndiospecific propylene enchainment. , 2001, Journal of the American Chemical Society.

[27]  L. Ustynyuk,et al.  DFT Study of Ethylene Polymerization by Zirconocene−Boron Catalytic Systems. Effect of Counterion on the Kinetics and Mechanism of the Process , 2001 .

[28]  A. Segre,et al.  “Seeing” the Stereoblock Junctions in Polypropylene Made with Oscillating Metallocene Catalysts , 2001 .

[29]  E. Somsook,et al.  Kinetics of initiation, propagation, and termination for the [rac-(C(2)H(4)(1-indenyl)(2))ZrMe][MeB(C(6)F(5))(3)]-catalyzed polymerization of 1-hexene. , 2001, Journal of the American Chemical Society.

[30]  G. Erker,et al.  Homogeneous single-component betaine Ziegler-Natta catalysts derived from (butadiene)zirconocene precursors. , 2001, Accounts of chemical research.

[31]  T. Ziegler,et al.  A Density Functional Study of the Competing Processes Occurring in Solution during Ethylene Polymerization by the Catalyst (1,2-Me2Cp)2ZrMe+ , 2001 .

[32]  H. Brintzinger,et al.  Anion exchange in alkyl-zirconocene borate ion pairs : are solvated alkyl-zirconocene cations relevant intermediates? , 2001 .

[33]  M. Thornton-Pett,et al.  Synthesis, structures, and reactivity of weakly coordinating anions with delocalized borate structure: the assessment of anion effects in metallocene polymerization catalysts. , 2001, Journal of the American Chemical Society.

[34]  I. Fragalà,et al.  Ligand Substituent, Anion, and Solvation Effects on Ion Pair Structure, Thermodynamic Stability, and Structural Mobility in “Constrained Geometry” Olefin Polymerization Catalysts: an Ab Initio Quantum Chemical Investigation , 2000 .

[35]  T. Marks,et al.  Metal-Alkyl Group Effects on the Thermodynamic Stability and Stereochemical Mobility of B(C6F5)3-Derived Zr and Hf Metallocenium Ion-Pairs , 2000 .

[36]  A. Abboud,et al.  New Family of Weakly Coordinating Anions , 2000 .

[37]  K. Bergander,et al.  Experimental Characterization of the Alkene-Addition/-Insertion Energy Profile at Homogeneous Group 4 Metal Ziegler-Type Catalysts , 2000 .

[38]  T. Marks,et al.  Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships. , 2000, Chemical reviews.

[39]  L. Cavallo,et al.  Selectivity in propene polymerization with metallocene catalysts. , 2000, Chemical reviews.

[40]  V. R. Jensen,et al.  Toward Quantitative Prediction of Stereospecificity of Metallocene-Based Catalysts for alpha-Olefin Polymerization. , 2000, Chemical reviews.

[41]  G. Coates Precise control of polyolefin stereochemistry using single-site metal catalysts. , 2000, Chemical reviews.

[42]  H. Alt,et al.  Effect of the Nature of Metallocene Complexes of Group IV Metals on Their Performance in Catalytic Ethylene and Propylene Polymerization. , 2000, Chemical reviews.

[43]  A. Rappé,et al.  Modeling metal-catalyzed olefin polymerization. , 2000, Chemical reviews.

[44]  E. P. Talsi,et al.  Mechanism of dimethylzirconocene activation with methylaluminoxane: NMR monitoring of intermediates at high Al/Zr ratios , 2000 .

[45]  H. Cramail,et al.  Activation of iPr(CpFluo)ZrCl2 by methylaluminoxane, 3. Kinetic investigation of the syndiospecific hex‐1‐ene polymerization in hydrocarbon and chlorinated media , 1999 .

[46]  M. Thornton-Pett,et al.  New weakly coordinating counter anions for high activity polymerisation catalysts: [(C6F5)3B–CN–B(C6F5)3]– and [Ni{CNB(C6F5)3}4]2– , 1999 .

[47]  H. Alt The heterogenization of homogeneous metallocene catalysts for olefin polymerization , 1999 .

[48]  M. C. Sacchi,et al.  Evidence of Zircononium−Polymeryl Ion Pairs from 13C NMR in Situ 13C2H4 Polymerization with Cp2Zr(13CH3)2-Based Catalysts , 1999 .

[49]  W. Kaminsky Metalorganic catalysts for synthesis and polymerisation : recent results by Ziegler-Natta and metallocene investigations , 1999 .

[50]  M. C. Baird,et al.  Olefin polymerization by pentamethylcyclopentadienyl trimethyltitanium, Cp*TiMe3 , 1999 .

[51]  I. Fragalà,et al.  Theoretical modeling of “constrained geometry catalysts” beyond the naked cation approach , 1999 .

[52]  H. Brintzinger,et al.  Diffusion coefficients of zirconocene–borate ion pairs studied by pulsed field-gradient NMR—evidence for ion quadruples in benzene solutions , 1999 .

[53]  R. Waymouth,et al.  Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. , 1998, Chemical reviews.

[54]  G. Erker,et al.  Arriving at an Experimental Estimate of the Intrinsic Activation Barrier of Olefin Insertion into the Zr−C Bond of an Active Metallocene Ziegler Catalyst , 1998 .

[55]  Tobin J. Marks,et al.  Highly Electrophilic Olefin Polymerization Catalysts. Quantitative Reaction Coordinates for Fluoroarylborane/Alumoxane Methide Abstraction and Ion-Pair Reorganization in Group 4 Metallocene and “Constrained Geometry” Catalysts , 1998 .

[56]  W. Kaminsky Highly active metallocene catalysts for olefin polymerization , 1998 .

[57]  J. Rösch,et al.  TITANIUM-CATALYSED FORMATION OF HIGH MOLECULAR WEIGHT ELASTOMERIC POLYPROPENE : EVIDENCE FOR LIVING PROPENE POLYMERISATION , 1997 .

[58]  R. Kleinschmidt,et al.  On the Mechanism of Stereospecific Polymerization—Development of a Universal Model to Demonstrate the Relationship Between Metallocene Structure and Polymer Microstructure , 1997 .

[59]  T. Marks,et al.  Very large counteranion modulation of cationic metallocene polymerization activity and stereoregulation by a sterically congested (perfluoroaryl)fluoroaluminate , 1997 .

[60]  M. C. Sacchi,et al.  Dimethylzirconocene-methylaluminoxane catalyst for olefin polymerization : NMR study of reaction equilibria , 1997 .

[61]  L. Jia,et al.  Cationic Metallocene Polymerization Catalysts Based on Tetrakis(pentafluorophenyl)borate and Its Derivatives. Probing the Limits of Anion “Noncoordination” via a Synthetic, Solution Dynamic, Structural, and Catalytic Olefin Polymerization Study , 1997 .

[62]  G. Fink,et al.  Propene polymerization with Ziegler‐type catalysts formed from Me2Si(Ind)2ZrMe2 and cation‐generating reagents , 1997 .

[63]  T. Marks,et al.  Organo-Lewis Acids As Cocatalysts in Cationic Metallocene Polymerization Catalysis. Unusual Characteristics of Sterically Encumbered Tris(perfluorobiphenyl)borane , 1996 .

[64]  H. Brintzinger,et al.  Binuclear zirconocene cations with μ-CH3-bridges in homogeneous Ziegler-Natta catalyst systems , 1996 .

[65]  D. Gillis,et al.  Synthesis and Characterization of the Series of d0 Arene Complexes [Cp*MMe2(η6-arene)][MeB(C6F5)3] (M = Ti, Zr, Hf) , 1996 .

[66]  R. Grubbs,et al.  α-Agostic Interactions and Olefin Insertion in Metallocene Polymerization Catalysts , 1996 .

[67]  M. Bochmann Cationic Group 4 metallocene complexes and their role in polymerisation catalysis: the chemistry of well defined Ziegler catalysts , 1996 .

[68]  A. Siedle,et al.  Stereochemical nonrigidity in metallocenium ions , 1995 .

[69]  M. Bochmann,et al.  Cationic group IV metal alkyl complexes and their role as olefin polymerization catalysts: The formation of ethyl-bridged dinuclear and heterodinuclear zirconium and hafnium complexes , 1995 .

[70]  David Fischer,et al.  Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts , 1995 .

[71]  S. Coles,et al.  Synthesis and Reactivity of New Mono(cyclopentadienyl)zirconium and -hafnium Alkyl Complexes. Crystal and Molecular Structure of [{C5H3(SiMe3)2}HfMe2(.eta.6-toluene)][BMe(C6F5)3] , 1995 .

[72]  G. Coates,et al.  Oscillating Stereocontrol: A Strategy for the Synthesis of Thermoplastic Elastomeric Polypropylene , 1995, Science.

[73]  K. R. Mann,et al.  How coordinating are non‐coordinating anions? , 1995 .

[74]  Tobin J. Marks,et al.  Cationic Metallocene Olefin Polymerization Catalysts. Thermodynamic and Kinetic Parameters for Ion Pair Formation, Dissociation, and Reorganization , 1995 .

[75]  N. Coville,et al.  Homogeneous group 4 metallocene ziegler-natta catalysts: The influence of cyclopentadienyl-ring substituents , 1994 .

[76]  M. Bochmann,et al.  Monomer-dimer equilibria in homo- and heterodinuclear cationic alkylzirconium complexes and their role in polymerization catalysis , 1994 .

[77]  D. Gillis,et al.  Novel arene complexes of titanium(IV), zirconium(IV), and hafnium(IV) , 1993 .

[78]  M. Bochmann,et al.  Base-free cationic 14-electron alkyls of Ti, Zr and Hf as polymerisation catalysts : a comparison , 1992 .

[79]  Norbert Herfert,et al.  Elementarprozesse der ziegler‐katalyse, 5. Lösungsmitteleinflüsse am Beispiel stereorigider Zirkonocen/methylaluminoxan Ziegler‐Katalysatoren , 1992 .

[80]  M. Bochmann,et al.  Cationic titanium alkyls as alkene polymerisation catalysts: Solvent and anion dependence , 1992 .

[81]  Tobin J. Marks,et al.  CATION-LIKE HOMOGENEOUS OLEFIN POLYMERIZATION CATALYSTS BASED UPON ZIRCONOCENE ALKYLS AND TRIS(PENTAFLUOROPHENYL)BORANE , 1991 .

[82]  R. F. Jordan Chemistry of Cationic Dicyclopentadienyl Group 4 Metal-Alky I Complexes , 1991 .

[83]  M. Bochmann,et al.  Base‐Free Cationic 14‐Electron Titanium and Zirconium Alkyls: In situ Generation, Solution Structures, and Olefin Polymerization Activity , 1990 .

[84]  M. Hursthouse,et al.  Synthesis of cationic alkyl bis(cyclopentadienyl)titanium complexes by one-electron oxidation of titanium(III) alkyls. The structure of [Cp2*TiMe(THF)]BPh4 and [Cp2*Ti(OH)(H2O)]BPh4·2THF , 1989 .

[85]  M. Hursthouse,et al.  Cationic alkylbis(cyclopentadienyl)titanium complexes. Synthesis, reactions with carbon monoxide and tert-butyl isocyanide, and the structure of [Cp2Ti[.eta.2-C(Me)NBu-tert](CNBu-tert)]BPh4.MeCN , 1987 .

[86]  R. Mynott,et al.  Ethylene insertion with soluble ziegler catalysts. III: The system Cp2TiMeCl/AlMe2Cl/13C2H4 studied by 13C-NMR spectroscopy. the time-development of chain propagation and oligomer distribution , 1987 .

[87]  B. Scott,et al.  Ethylene polymerization by a cationic dicyclopentadienyl zirconium(IV) alkyl complex , 1986 .

[88]  M. Bochmann,et al.  Synthesis and insertion reactions of cationic alkylbis(cyclopentadienyl)titanium complexes , 1986 .

[89]  E. Gabe,et al.  Organometallic compounds of Group III. Part 41. Direct observation of the initial insertion of an unsaturated hydrocarbon into the titanium-carbon bond of the soluble Ziegler polymerization catalyst Cp2TiCl2-MeAlCl2 , 1985 .

[90]  D. Schnell,et al.  Elementarprozesse der Ziegler-Katalyse. III. Ermittlung der Kettenwachstumsgeschwindigkeitskonstanten aus der Molmassenverteilung† , 1982 .

[91]  G. Fink,et al.  Elementarprozesse löslicher ziegler‐katalysatoren. Polymerisationskinetische analyse und mathematische modellierung im system Cp2TiPropylCl/AlEtCl2/ethylen , 1981 .

[92]  H. Brintzinger,et al.  1,1′‐Trimethylenebis(η5‐3‐tert‐butylcyclopentadienyl)‐titanium(IV)Dichloride, a Chiral ansa‐Titanocene Derivative , 1979 .

[93]  W. Zoller,et al.  Elementary steps in Ziegler‐Natta catalysis , 1976 .

[94]  G. Fink,et al.  Elementarprozesse der Ziegler‐Natta‐Katalyse. I. Oligomerenkinetik im Strömungsrohr , 1974 .

[95]  G. Henrici-Olivė,et al.  The Active Species in Homogeneous Ziegler‐Natta Catalysts for the Polymerization of Ethylene , 1967 .

[96]  A. Massey,et al.  Perfluorophenyl derivatives of the elements : I. Tris(pentafluorophenyl)boron , 1964 .

[97]  K. Ziegler Folgen und Werdegang einer Erfindung Nobel‐Vortrag am 12. Dezember 1963 , 1964 .

[98]  G. Natta Von der stereospezifischen Polymerisation zur asymmetrischen autokatalytischen Synthese von Makromolekülen Nobel-Vortrag am 12. Dezember 1963† , 1964 .

[99]  D. Breslow,et al.  Polymerization of Ethylene with Bis-(cyclopentadienyl)-titanium Dichloride and Diethylaluminum Chloride , 1960 .

[100]  W. Long Complexes of Aluminum Chloride and Methylaluminum Dichloride with Bis-(cyclopentadienyl)-titanium Dichloride as Catalysts for the Polymerization of Ethylene1 , 1959 .

[101]  J. Chien Kinetics of Ethylene Polymerization Catalyzed by Bis-(cyclopentadienyl)-titanium Dichloride-Dimethylaluminum Chloride1 , 1959 .

[102]  G. Natta,et al.  The nature of some soluble catalysts for low pressure ethylene polymerization , 1957 .

[103]  D. Breslow,et al.  BIS-(CYCLOPENTADIENYL)-TITANIUM DICHLORIDE —ALKYLALUMINUM COMPLEXLS AS CATALYSTS FOR THE POLYMERIZATION OF ETHYLENE , 1957 .

[104]  W. D. Phillips,et al.  LEWIS ACID CHARACTER OF TELLURIUM HEXAFLUORIDE , 1957 .

[105]  G. Natta Stereospezifische Katalysen und isotaktische Polymere , 1956 .

[106]  Hans-Dieter Martin,et al.  Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren , 1955 .

[107]  Hans-Dieter Martin,et al.  Polymerisation von Äthylen und anderen Olefinen , 1955 .

[108]  G. Wilkinson,et al.  Bis-cyclopentadienyl Compounds of Ti, Zr, V, Nb and Ta , 1954 .

[109]  F. Cotton,et al.  BIS-CYCLOPENTADIENYL DERIVATIVES OF SOME TRANSITION ELEMENTS , 1953 .