Multilinear Isometric Embedding for visual pattern analysis

This paper proposes a novel tensor based dimensionality reduction algorithm called Multilinear Isometric Embedding (MIE) based on a representative manifold learning algorithm Isomap. Unlike Isomap that unfolds input data to the vector form, MIE directly works on more general tensor representation and utilizes iterative strategy to seek the low-dimensional equivalence, which best preserves the global geometry. By avoiding the problems caused by data vectorization, MIE reduces the data analysis difficulty and computational cost. More importantly, MIE keeps the intrinsic tensor structure of the data in low-dimensional representation. Meanwhile, MIE inherits the merits of Isomap, i.e., the ability of uncovering the global geometry of high-dimensional observations. By providing explicit embedding function, MIE makes the embedding of new data points to the low-dimensional space straightforward. Experiments on various datasets validate the effectiveness of proposed method.

[1]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[2]  Joshua B. Tenenbaum,et al.  Mapping a Manifold of Perceptual Observations , 1997, NIPS.

[3]  Robert Pless,et al.  Image spaces and video trajectories: using Isomap to explore video sequences , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[4]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[5]  Stan Z. Li,et al.  Manifold Learning and Applications in Recognition , 2005 .

[6]  Xuelong Li,et al.  Discriminant Locally Linear Embedding With High-Order Tensor Data , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[7]  David Zhang,et al.  Directional independent component analysis with tensor representation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[9]  Haiping Lu,et al.  MPCA: Multilinear Principal Component Analysis of Tensor Objects , 2008, IEEE Transactions on Neural Networks.

[10]  Xuelong Li,et al.  Supervised tensor learning , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[11]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[12]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[13]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[14]  Michael Greenacre,et al.  Multiway data analysis , 1992 .

[15]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[16]  Dong Xu,et al.  Discriminant analysis with tensor representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[19]  Jian Yang,et al.  Two-dimensional PCA: a new approach to appearance-based face representation and recognition , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Feiping Nie,et al.  Extracting the optimal dimensionality for local tensor discriminant analysis , 2009, Pattern Recognit..

[21]  Harry Shum,et al.  Concurrent subspaces analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[22]  Deng Cai,et al.  Tensor Subspace Analysis , 2005, NIPS.

[23]  Jiawei Han,et al.  Isometric Projection , 2007, AAAI.

[24]  Donald H. Foley Considerations of sample and feature size , 1972, IEEE Trans. Inf. Theory.

[25]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Miguel Á. Carreira-Perpiñán,et al.  A Review of Dimension Reduction Techniques , 2009 .

[27]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[28]  David R. Karger,et al.  Finding nearest neighbors in growth-restricted metrics , 2002, STOC '02.

[29]  Dimitrios Gunopulos,et al.  Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.

[30]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[31]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[32]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[33]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[34]  David J. Kriegman,et al.  Visual tracking and recognition using probabilistic appearance manifolds , 2005, Comput. Vis. Image Underst..

[35]  Xuelong Li,et al.  General Tensor Discriminant Analysis and Gabor Features for Gait Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..