Measure-Valued Solutions and Weak–Strong Uniqueness for the Incompressible Inviscid Fluid–Rigid Body Interaction

[1]  Š. Nečasová,et al.  Weak-strong uniqueness for the compressible fluid-rigid body interaction , 2019, Journal of Differential Equations.

[2]  B. Muha,et al.  A Uniqueness Result for 3D Incompressible Fluid-Rigid Body Interaction Problem , 2019, Journal of Mathematical Fluid Mechanics.

[3]  G. Galdi,et al.  On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior , 2019, International Journal of Non-Linear Mechanics.

[4]  P. Gwiazda,et al.  A P ] 3 J an 2 01 8 DISSIPATIVE MEASURE VALUED SOLUTIONS FOR GENERAL CONSERVATION LAWS , 2018 .

[5]  Š. Nečasová,et al.  Local existence of strong solutions and weak–strong uniqueness for the compressible Navier–Stokes system on moving domains , 2017, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[6]  M. Bravin Energy Equality and Uniqueness of Weak Solutions of a “Viscous Incompressible Fluid + Rigid Body” System with Navier Slip-with-Friction Conditions in a 2D Bounded Domain , 2018, Journal of Mathematical Fluid Mechanics.

[7]  B. Muha,et al.  Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition , 2017, Journal of Mathematical Physics.

[8]  Partial Differential Equations in Fluid Mechanics , 2018 .

[9]  Emil Wiedemann,et al.  Weak-Strong Uniqueness in Fluid Dynamics , 2017, Partial Differential Equations in Fluid Mechanics.

[10]  Stefan Doboszczak,et al.  Relative entropy and a weak-strong uniqueness principle for the compressible Navier-Stokes equations on moving domains , 2016, Appl. Math. Lett..

[11]  G. Galdi,et al.  Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid , 2016, Archive for Rational Mechanics and Analysis.

[12]  Emil Wiedemann,et al.  Dissipative measure-valued solutions to the compressible Navier–Stokes system , 2015, Calculus of Variations and Partial Differential Equations.

[13]  O. Glass,et al.  Low regularity solutions for the two-dimensional "rigid body + incompressible Euler" system , 2012, Differential and Integral Equations.

[14]  Chao Wang,et al.  Strong solutions for the fluid-solid systems in a 2-D domain , 2014, Asymptot. Anal..

[15]  G. Galdi,et al.  Inertial Motions of a Rigid Body with a Cavity Filled with a Viscous Liquid , 2013, 1405.6596.

[16]  David G'erard-Varet,et al.  The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow , 2013, 1302.7098.

[17]  Matthias Hieber,et al.  Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids , 2012 .

[18]  Matthieu Hillairet,et al.  Existence of Weak Solutions Up to Collision for Viscous Fluid‐Solid Systems with Slip , 2012, 1207.0469.

[19]  O. Glass,et al.  Uniqueness Results for Weak Solutions of Two-Dimensional Fluid–Solid Systems , 2012, Archive for Rational Mechanics and Analysis.

[20]  F. Sueur A Kato Type Theorem for the Inviscid Limit of the Navier-Stokes Equations with a Moving Rigid Body , 2011, 1110.6065.

[21]  A. Tzavaras,et al.  Weak–Strong Uniqueness of Dissipative Measure-Valued Solutions for Polyconvex Elastodynamics , 2011, 1109.6686.

[22]  Olivier Glass,et al.  On the Motion of a Rigid Body in a Two-Dimensional Irregular Ideal Flow , 2011, SIAM J. Math. Anal..

[23]  F. Sueur On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data , 2011, 1112.3152.

[24]  O. Glass,et al.  On the motion of a small body immersed in a two dimensional incompressible perfect fluid , 2011, 1104.5404.

[25]  M. Tucsnak,et al.  Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid , 2010 .

[26]  Yann Brenier,et al.  Weak-Strong Uniqueness for Measure-Valued Solutions , 2009, 0912.1028.

[27]  Matthieu Hillairet,et al.  Collisions in Three-Dimensional Fluid Structure Interaction Problems , 2009, SIAM J. Math. Anal..

[28]  D. Gérard-Varet,et al.  Regularity Issues in the Problem of Fluid Structure Interaction , 2008, 0805.2654.

[29]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .

[30]  Lydéric Bocquet,et al.  Flow boundary conditions from nano- to micro-scales. , 2006, Soft matter.

[31]  Lionel Rosier,et al.  On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid , 2007 .

[32]  Lionel Rosier,et al.  CLASSICAL SOLUTIONS FOR THE EQUATIONS MODELLING THE MOTION OF A BALL IN A BIDIMENSIONAL INCOMPRESSIBLE PERFECT FLUID , 2005 .

[33]  E. Feireisl On the motion of rigid bodies in a viscous incompressible fluid , 2003 .

[34]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[35]  Giovanni P. Galdi,et al.  Chapter 7 – On the Motion of a Rigid Body in a Viscous Liquid: A Mathematical Analysis with Applications , 2002 .

[36]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[37]  R. van der Hout,et al.  Nonuniqueness for the Heat Flow¶of Harmonic Maps on the Disk , 2002 .

[38]  Max Gunzburger,et al.  Global Existence of Weak Solutions for Viscous Incompressible Flows around a Moving Rigid Body in Three Dimensions , 2000 .

[39]  C. Conca,et al.  Existence of solutions for the equations , 2000 .

[40]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[41]  C. Conca,et al.  Motion of a rigid body in a viscous fluid , 1999 .

[42]  V. N. Starovoitov,et al.  ON A MOTION OF A SOLID BODY IN A VISCOUS FLUID. TWO-DIMENSIONAL CASE. , 1999 .

[43]  J. Málek Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .

[44]  J. Delort Existence de nappes de tourbillon en dimension deux , 1991 .

[45]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[46]  A. Majda,et al.  Oscillations and concentrations in weak solutions of the incompressible fluid equations , 1987 .

[47]  A. Majda,et al.  Concentrations in regularizations for 2-D incompressible flow , 1987 .

[48]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[49]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[50]  M. E. O'Neill,et al.  On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere , 1969 .

[51]  Howard Brenner,et al.  The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers , 1963, Journal of Fluid Mechanics.

[52]  Vincent C. Poor,et al.  On the Motion of a Rigid Body , 1945 .