Rank-width and tree-width of H-minor-free graphs

We prove that for any fixed r>=2, the tree-width of graphs not containing K"r as a topological minor (resp. as a subgraph) is bounded by a linear (resp. polynomial) function of their rank-width. We also present refinements of our bounds for other graph classes such as K"r-minor free graphs and graphs of bounded genus.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  G. Ringel Das Geschlecht des vollständigen paaren Graphen , 1965 .

[3]  David R. Wood,et al.  On the maximum number of cliques in a graph embedded in a surface , 2009, Eur. J. Comb..

[4]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion II. Algorithmic aspects , 2008, Eur. J. Comb..

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  David R. Wood,et al.  On the Maximum Number of Cliques in a Graph , 2006, Graphs Comb..

[7]  Udi Rotics,et al.  On the Relationship between Clique-Width and Treewidth , 2001, WG.

[8]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion I. Decompositions , 2008, Eur. J. Comb..

[9]  Zoltán Füredi,et al.  Extremal set systems with restricted k-wise intersections , 2004, J. Comb. Theory, Ser. A.

[10]  Zdenek Dvorak,et al.  On forbidden subdivision characterizations of graph classes , 2008, Eur. J. Comb..

[11]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[12]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[13]  Egon Wanke,et al.  The Tree-Width of Clique-Width Bounded Graphs Without Kn, n , 2000, WG.

[14]  Dieter Kratsch,et al.  Graph-Theoretic Concepts in Computer Science , 1987, Lecture Notes in Computer Science.

[15]  G. Ringel Der vollständige paare Graph auf nichtorientierbaren Flächen. , 1965 .

[16]  Hal A. Kierstead,et al.  Orderings on Graphs and Game Coloring Number , 2003, Order.

[17]  Richard H. Schelp,et al.  Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[18]  János Komlós,et al.  Topological Cliques in Graphs , 1994, Combinatorics, Probability and Computing.

[19]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[20]  Frank Harary,et al.  Graph Theory , 2016 .

[21]  Alexandr V. Kostochka,et al.  Lower bound of the hadwiger number of graphs by their average degree , 1984, Comb..

[22]  Andrew Thomason,et al.  The Extremal Function for Complete Minors , 2001, J. Comb. Theory B.

[23]  Paul Wollan,et al.  An improved linear edge bound for graph linkages , 2005, Eur. J. Comb..

[24]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[25]  A. Kostochka The minimum Hadwiger number for graphs with a given mean degree of vertices , 1982 .

[26]  Paul D. Seymour,et al.  Graph Minors. XI. Circuits on a Surface , 1994, J. Comb. Theory, Ser. B.

[27]  Jaroslav Nesetril,et al.  Grad and classes with bounded expansion III. Restricted graph homomorphism dualities , 2008, Eur. J. Comb..

[28]  Peter Frankl,et al.  Intersection theorems with geometric consequences , 1981, Comb..

[29]  Béla Bollobás,et al.  Proof of a Conjecture of Mader, Erdös and Hajnal on Topological Complete Subgraphs , 1998, Eur. J. Comb..

[30]  B. Mohar,et al.  Graph Minors , 2009 .

[31]  Sang-il Oum,et al.  Rank‐width is less than or equal to branch‐width , 2008, J. Graph Theory.

[32]  J. Nesetril,et al.  Grad and classes with bounded expansion III. restricted dualities , 2005, math/0508325.

[33]  James R. Lee,et al.  Improved approximation algorithms for minimum-weight vertex separators , 2005, STOC '05.

[34]  Xuding Zhu,et al.  Colouring graphs with bounded generalized colouring number , 2009, Discret. Math..

[35]  A. Thomason An extremal function for contractions of graphs , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  J. Nesetril,et al.  Structural Properties of Sparse Graphs , 2008, Electron. Notes Discret. Math..