Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities

Constructing compact quantum circuits for universal quantum gates on solid-state systems is crucial for quantum computing. We present some compact quantum circuits for a deterministic solid-state quantum computing, including the cnot, Toffoli, and Fredkin gates on the diamond NV centers confined inside cavities, achieved by some input-output processes of a single photon. Our quantum circuits for these universal quantum gates are simple and economic. Moreover, additional electron qubits are not employed, but only a single-photon medium. These gates have a long coherent time. We discuss the feasibility of these universal solid-state quantum gates, concluding that they are feasible with current technology.

[1]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[2]  G. Vidal,et al.  Universal quantum circuit for two-qubit transformations with three controlled-NOT gates , 2003, quant-ph/0307177.

[3]  D. Meschede,et al.  Tunable whispering-gallery-mode resonators for cavity quantum electrodynamics , 2005 .

[4]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[5]  J. L. O'Brien,et al.  Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon , 2007, 0708.2019.

[6]  DiVincenzo,et al.  Five two-bit quantum gates are sufficient to implement the quantum Fredkin gate. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[7]  Cristian Bonato,et al.  Permanent tuning of quantum dot transitions to degenerate microcavity resonances , 2011 .

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  R Hanson,et al.  Polarization and readout of coupled single spins in diamond. , 2006, Physical review letters.

[10]  Christian Kurtsiefer,et al.  Stable Solid-State Source of Single Photons , 2000 .

[11]  D. J. Twitchen,et al.  Quantum register based on coupled electron spins in a room-temperature solid. , 2010 .

[12]  M. Mehring,et al.  Entanglement between an electron and a nuclear spin 1/2. , 2002, Physical review letters.

[13]  L. Liang Realization of quantum SWAP gate between flying and stationary qubits (4 pages) , 2005 .

[14]  Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer , 2010, 1011.0252.

[15]  D. D. Awschalom,et al.  Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond , 2005 .

[16]  Cristian Bonato,et al.  H1 photonic crystal cavities for hybrid quantum information protocols. , 2012, Optics express.

[17]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[18]  Fu-Guo Deng,et al.  Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. , 2013, Optics express.

[19]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[20]  Fu-Guo Deng,et al.  Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities , 2013, 1302.0046.

[21]  L. Childress,et al.  Supporting Online Material for , 2006 .

[22]  C. Beenakker,et al.  Charge detection enables free-electron quantum computation. , 2004, Physical Review Letters.

[23]  D. D. Awschalom,et al.  Gigahertz Dynamics of a Strongly Driven Single Quantum Spin , 2009, Science.

[24]  S. Spillane,et al.  Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics (10 pages) , 2004, quant-ph/0410218.

[25]  Igor L. Markov,et al.  Minimal universal two-qubit controlled-NOT-based circuits (8 pages) , 2004 .

[26]  Philip Hemmer,et al.  Coherent population trapping of single spins in diamond under optical excitation. , 2006, Physical review letters.

[27]  F. Jelezko,et al.  Observation of coherent oscillation of a single nuclear spin and realization of a two-qubit conditional quantum gate. , 2004, Physical review letters.

[28]  Jun Zhang,et al.  Optimal quantum circuit synthesis from controlled-unitary gates (6 pages) , 2004 .

[29]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[30]  Pengbo Li,et al.  Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator , 2010, 1010.6138.

[31]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[32]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[33]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[34]  M. Feng,et al.  Deterministically entangling distant nitrogen-vacancy centers by a nanomechanical cantilever , 2009, 0907.5550.

[35]  N. A. Wasley,et al.  Restoring mode degeneracy in H1 photonic crystal cavities by uniaxial strain tuning , 2012 .

[36]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[37]  E Solano,et al.  Ultrafast quantum gates in circuit QED. , 2011, Physical review letters.

[38]  Colin P. Williams,et al.  Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.

[39]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[40]  Ying Wu,et al.  Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process , 2012 .

[41]  A. Wallraff,et al.  Quantum-control approach to realizing a Toffoli gate in circuit QED , 2011, 1108.3442.

[42]  C. Santori,et al.  Coherent population trapping in diamond N-V centers at zero magnetic field , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[43]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[44]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[45]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  M. Feng,et al.  Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities , 2011 .

[47]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[48]  Yu-Jing Zhao,et al.  Scheme for realizing quantum-information storage and retrieval from quantum memory based on nitrogen-vacancy centers , 2012 .

[49]  W. J. Munro,et al.  Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity , 2009, 0910.4549.

[50]  J. Wrachtrup,et al.  Scanning confocal optical microscopy and magnetic resonance on single defect centers , 1997 .

[51]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[52]  Oded Zilberberg,et al.  Controlled-NOT gate for multiparticle qubits and topological quantum computation based on parity measurements , 2007, 0708.1062.

[53]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[54]  D. Awschalom,et al.  A quantum memory intrinsic to single nitrogen-vacancy centres in diamond , 2011 .

[55]  Qiong Chen,et al.  Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators , 2011 .

[56]  Fu-Guo Deng,et al.  Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity , 2013, 1303.0056.

[57]  Andrew G. Glen,et al.  APPL , 2001 .

[58]  Cristian Bonato,et al.  CNOT and Bell-state analysis in the weak-coupling cavity QED regime. , 2010, Physical review letters.

[59]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[60]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[61]  A. Lösch Nano , 2012, Ortsregister.

[62]  Mats Larsson,et al.  Composite optical microcavity of diamond nanopillar and silica microsphere. , 2009, Nano letters.

[63]  Jiangfeng Du,et al.  Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity , 2010 .

[64]  T. Kennedy,et al.  Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond , 2001 .

[65]  Raymond G. Beausoleil,et al.  Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond , 2009 .

[66]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[67]  Matthew Sellars,et al.  Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics , 2006 .

[68]  Takao Aoki,et al.  A Photon Turnstile Dynamically Regulated by One Atom , 2008, Science.

[69]  Zhang-qi Yin,et al.  One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity , 2010, 1006.0278.

[70]  M S Shahriar,et al.  Raman-excited spin coherences in nitrogen-vacancy color centers in diamond. , 2001, Optics letters.

[71]  G. Long,et al.  Parallel Quantum Computing in a Single Ensemble Quantum Computer , 2003, quant-ph/0307055.

[72]  Young-Shin Park,et al.  Cavity QED with diamond nanocrystals and silica microspheres. , 2006, Nano letters.

[73]  Pierre M. Petroff,et al.  Tuning micropillar cavity birefringence by laser induced surface defects , 2009, 0912.0286.

[74]  C. Becher,et al.  Coupling of a single N-V center in diamond to a fiber-based microcavity , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[75]  Hailin Wang,et al.  A composite microcavity of diamond nanopillar and deformed silica microsphere with enhanced evanescent decay length. , 2010, Optics express.

[76]  Shanhui Fan,et al.  Quantum critical coupling conditions for zero single-photon transmission through a coupled atom-resonator-waveguide system , 2010 .

[77]  Cristian Bonato,et al.  Strain tuning of quantum dot optical transitions via laser-induced surface defects , 2011, 1107.2486.

[78]  Igor L. Markov,et al.  Recognizing small-circuit structure in two-qubit operators (5 pages) , 2003 .

[79]  Yaoyun Shi Both Toffoli and controlled-NOT need little help to do universal quantum computing , 2003, Quantum Inf. Comput..

[80]  Marko Loncar,et al.  Design of a silicon nitride photonic crystal nanocavity with a Quality factor of one million for coupling to a diamond nanocrystal. , 2008, Optics express.