A STRUCTURED STAIRCASE ALGORITHM FOR SKEW-SYMMETRIC / SYMMETRIC
暂无分享,去创建一个
[1] Christian H. Bischof,et al. Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[2] V. Mehrmann,et al. Canonical forms for linear differential-algebraic equations with variable coefficients , 1994 .
[3] Uri M. Ascher,et al. Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .
[4] P. Lancaster,et al. The Algebraic Riccati Equation , 1995 .
[5] Peter Benner,et al. A robust numerical method for the γ-iteration in H∞ control , 2007 .
[6] Alan J. Laub,et al. Numerically Reliable Computation of Optimal Performance in Singular $H_{\inf}$ Control , 1997 .
[7] Doktor der Naturwissenschaften. Numerical Methods and Software for General and Structured Eigenvalue Problems , 2004 .
[8] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[9] V. Mehrmann,et al. Palindromic Polynomial Eigenvalue Problems:Good Vibrations from Good Linearizations , 2006 .
[10] Linda R. Petzold,et al. Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.
[11] Erik Elmroth,et al. A Geometric Approach to Perturbation Theory of Matrices and Matrix Pencils. Part I: Versal Deformations , 1997, SIAM J. Matrix Anal. Appl..
[12] Gene H. Golub,et al. Matrix computations , 1983 .
[13] Peter Benner,et al. Numerical Computation of Deflating Subspaces of Skew-Hamiltonian/Hamiltonian Pencils , 2002, SIAM J. Matrix Anal. Appl..
[14] R. Byers,et al. Descriptor Systems Without Controllability at Infinity , 1997 .
[15] David S. Watkins,et al. POLYNOMIAL EIGENVALUE PROBLEMS WITH HAMILTONIAN STRUCTURE , 2002 .
[16] P. Dooren. A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .
[17] Robert D. Russell,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[18] R. C. Thompson,et al. Pencils of complex and real symmetric and skew matrices , 1991 .
[19] Volker Mehrmann,et al. Numerical methods in control , 2000 .
[20] V. Mehrmann. The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .
[21] Christian Mehl,et al. Condensed Forms for Skew-Hamiltonian/Hamiltonian Pencils , 1999, SIAM J. Matrix Anal. Appl..
[22] R. C. Thompson,et al. The characteristic polynomial of a principal subpencil of a Hermitian matrix pencil , 1976 .
[23] Mihail M. Konstantinov,et al. Computational methods for linear control systems , 1991 .
[24] Volker Mehrmann,et al. A numerical method for computing the Hamiltonian Schur form , 2006, Numerische Mathematik.
[25] V. Mehrmann,et al. Structured Jordan canonical forms for structured matrices that are hermitian, skew hermitian or unitary with respect to indefinite inner products , 1999 .
[26] Vasile Sima,et al. Algorithms for Linear-Quadratic Optimization , 2021 .
[27] V. Mehrmann,et al. A new method for computing the stable invariant subspace of a real Hamiltonian matrix , 1997 .
[28] Volker Mehrmann,et al. A new look at pencils of matrix valued functions , 1994 .
[29] Peter Kunkel,et al. Symmetric collocation methods for linear differential-algebraic boundary value problems , 2002, Numerische Mathematik.
[30] A. Laub,et al. Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..
[31] Adam W. Bojanczyk,et al. Periodic Schur decomposition: algorithms and applications , 1992, Optics & Photonics.
[32] Peter Lancaster,et al. The theory of matrices , 1969 .
[33] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[34] Volker Mehrmann,et al. Canonical forms for Hamiltonian and symplectic matrices and pencils , 1999 .
[35] P. Dooren. The Computation of Kronecker's Canonical Form of a Singular Pencil , 1979 .