Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences

The concepts of (t,m,s)-nets and (t,s)-sequences are among the best known classes of point sets in the theory of quasi-Monte Carlo methods. In this paper, we give new general upper bounds for the star discrepancy of (t,m,s)-nets and (t,s)-sequences. By these findings, we improve existing upper bounds on the discrepancy of such point sets and extend results that have been obtained for low-dimensional nets and sequences during the past years.

[1]  L. D. Clerck,et al.  A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .

[2]  Peter Kritzer On the Star Discrepancy of Digital Nets and Sequences in Three Dimensions , 2006 .

[3]  Peter Kritzer On some remarkable properties of the two-dimensional Hammersley point set in base 2 , 2006 .

[4]  Friedrich Pillichshammer On the discrepancy of (0,1)-sequences , 2004 .

[5]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..

[6]  H. Faure,et al.  On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .

[7]  Michael Drmota,et al.  Precise distribution properties of the van der Corput sequence and related sequences , 2005 .

[8]  Henri Faure Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .

[9]  D. M. Hutton,et al.  Handbook of Discrete and Combinatorial Mathematics , 2001 .

[10]  Friedrich Pillichshammer Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .

[11]  Peter Kritzer,et al.  A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..

[12]  Friedrich Pillichshammer,et al.  Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .

[13]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[14]  Kenneth H. Rosen Handbook of Discrete and Combinatorial Mathematics , 1999 .

[15]  Henri Faure Discrépances de suites associées à un système de numération (en dimension un) , 1981 .

[16]  Wolfgang Ch. Schmid,et al.  MinT: A Database for Optimal Net Parameters , 2006 .

[17]  Peter Kritzer,et al.  Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2) -sequences over Z2 , 2005 .

[18]  Peter Kritzer,et al.  A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets , 2007 .

[19]  H. Niederreiter Point sets and sequences with small discrepancy , 1987 .