Improved upper bounds on the star discrepancy of (t, m, s)-nets and (t, s)-sequences
暂无分享,去创建一个
[1] L. D. Clerck,et al. A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley , 1986 .
[2] Peter Kritzer. On the Star Discrepancy of Digital Nets and Sequences in Three Dimensions , 2006 .
[3] Peter Kritzer. On some remarkable properties of the two-dimensional Hammersley point set in base 2 , 2006 .
[4] Friedrich Pillichshammer. On the discrepancy of (0,1)-sequences , 2004 .
[5] Harald Niederreiter,et al. Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..
[6] H. Faure,et al. On the star-discrepancy of generalized Hammersley sequences in two dimensions , 1986 .
[7] Michael Drmota,et al. Precise distribution properties of the van der Corput sequence and related sequences , 2005 .
[8] Henri Faure. Discrepancy and diaphony of digital (0,1)-sequences in prime base , 2005 .
[9] D. M. Hutton,et al. Handbook of Discrete and Combinatorial Mathematics , 2001 .
[10] Friedrich Pillichshammer. Improved upper bounds for the star discrepancy of digital nets in dimension 3 , 2003 .
[11] Peter Kritzer,et al. A best possible upper bound on the star discrepancy of (t, m, 2)-nets , 2006, Monte Carlo Methods Appl..
[12] Friedrich Pillichshammer,et al. Sums of distances to the nearest integer and the discrepancy of digital nets , 2003 .
[13] H. Niederreiter,et al. Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .
[14] Kenneth H. Rosen. Handbook of Discrete and Combinatorial Mathematics , 1999 .
[15] Henri Faure. Discrépances de suites associées à un système de numération (en dimension un) , 1981 .
[16] Wolfgang Ch. Schmid,et al. MinT: A Database for Optimal Net Parameters , 2006 .
[17] Peter Kritzer,et al. Star discrepancy estimates for digital (t, m, 2)-nets and digital (t, 2) -sequences over Z2 , 2005 .
[18] Peter Kritzer,et al. A thorough analysis of the discrepancy of shifted Hammersley and van der Corput point sets , 2007 .
[19] H. Niederreiter. Point sets and sequences with small discrepancy , 1987 .