In Vivo Gene‐Silencing in Fibrotic Liver by siRNA‐Loaded Cationic Nanohydrogel Particles

Cationic nanohydrogel particles loaded with anti-Col1α1 siRNA suppress collagen synthesis and deposition in fibrotic mice: Systemically administered 40 nm sized nanogel particles accumulate in collagen-expressing cells in the liver. Their siRNA payload induces a sequence specific in vivo gene knockdown affording an efficient antifibrotic effect in mice with liver fibrosis.

[1]  R. Zentel,et al.  Not just for tumor targeting: unmet medical needs and opportunities for nanomedicine. , 2015, Nanomedicine.

[2]  D. Schuppan Liver fibrosis: Common mechanisms and antifibrotic therapies. , 2015, Clinics and research in hepatology and gastroenterology.

[3]  D. Schuppan,et al.  Specific hepatic delivery of procollagen α1(I) small interfering RNA in lipid‐like nanoparticles resolves liver fibrosis , 2015, Hepatology.

[4]  D. Schuppan,et al.  Antifibrotic Therapies in the Liver , 2015, Seminars in Liver Disease.

[5]  R. Zentel,et al.  CpG‐Loaded Multifunctional Cationic Nanohydrogel Particles as Self‐Adjuvanting Glycopeptide Antitumor Vaccines , 2015, Advanced healthcare materials.

[6]  Zhengping Zhang,et al.  Corona-directed nucleic acid delivery into hepatic stellate cells for liver fibrosis therapy. , 2015, ACS nano.

[7]  W. Tremel,et al.  New Techniques to Assess In Vitro Release of siRNA from Nanoscale Polyplexes , 2014, Pharmaceutical Research.

[8]  R. Zentel,et al.  Degradable cationic nanohydrogel particles for stimuli-responsive release of siRNA. , 2014, Macromolecular rapid communications.

[9]  K. Kataoka,et al.  Size-dependent knockdown potential of siRNA-loaded cationic nanohydrogel particles. , 2014, Biomacromolecules.

[10]  Ruth Duncan,et al.  Polymer therapeutics: Top 10 selling pharmaceuticals - what next? , 2014, Journal of controlled release : official journal of the Controlled Release Society.

[11]  M. Bondì,et al.  Nanotechnology applications for the therapy of liver fibrosis. , 2014, World journal of gastroenterology.

[12]  Frank Tacke,et al.  Macrophage heterogeneity in liver injury and fibrosis. , 2014, Journal of hepatology.

[13]  Yu Matsumoto,et al.  Aggregation behavior of cationic nanohydrogel particles in human blood serum. , 2014, Biomacromolecules.

[14]  R. Hidalgo-Álvarez,et al.  Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. , 2014, Chemical reviews.

[15]  Daniel Anderson,et al.  Delivery materials for siRNA therapeutics. , 2013, Nature materials.

[16]  Enrico Rossi,et al.  Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome , 2013, Liver international : official journal of the International Association for the Study of the Liver.

[17]  D. Schuppan,et al.  Evolving therapies for liver fibrosis. , 2013, The Journal of clinical investigation.

[18]  C. Vanhove,et al.  In vivo disassembly of IV administered siRNA matrix nanoparticles at the renal filtration barrier. , 2013, Biomaterials.

[19]  K. Howard,et al.  Polycation-based nanoparticle delivery of RNAi therapeutics: adverse effects and solutions. , 2012, Advanced drug delivery reviews.

[20]  Ernst Wagner,et al.  Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[21]  L. Lyon,et al.  Multifunctional nanogels for siRNA delivery. , 2012, Accounts of chemical research.

[22]  D. Schaffert,et al.  Structure-activity relationships of siRNA carriers based on sequence-defined oligo (ethane amino) amides. , 2012, Journal of controlled release : official journal of the Controlled Release Society.

[23]  Takahiro Nomoto,et al.  Targeted polymeric micelles for siRNA treatment of experimental cancer by intravenous injection. , 2012, ACS nano.

[24]  M. Helm,et al.  Cationic nanohydrogel particles as potential siRNA carriers for cellular delivery. , 2012, ACS nano.

[25]  Mark E. Davis,et al.  Polycation-siRNA nanoparticles can disassemble at the kidney glomerular basement membrane , 2012, Proceedings of the National Academy of Sciences.

[26]  P. Couvreur,et al.  Nanotechnology for therapy and imaging of liver diseases. , 2011, Journal of hepatology.

[27]  R. Duncan,et al.  Nanomedicine(s) under the microscope. , 2011, Molecular pharmaceutics.

[28]  D. Schaffert,et al.  Solid-phase synthesis of sequence-defined T-, i-, and U-shape polymers for pDNA and siRNA delivery. , 2011, Angewandte Chemie.

[29]  Takahiro Nomoto,et al.  Effect of polymer structure on micelles formed between siRNA and cationic block copolymer comprising thiols and amidines. , 2011, Biomacromolecules.

[30]  Robert Langer,et al.  Combinatorial synthesis of chemically diverse core-shell nanoparticles for intracellular delivery , 2011, Proceedings of the National Academy of Sciences.

[31]  Kazunori Kataoka,et al.  Supramolecular nanodevices: from design validation to theranostic nanomedicine. , 2011, Accounts of chemical research.

[32]  D. Schuppan,et al.  Tissue transglutaminase does not affect fibrotic matrix stability or regression of liver fibrosis in mice. , 2011, Gastroenterology.

[33]  Joseph M. DeSimone,et al.  Strategies in the design of nanoparticles for therapeutic applications , 2010, Nature Reviews Drug Discovery.

[34]  B. Sproat,et al.  PEGylation of biodegradable dextran nanogels for siRNA delivery. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[35]  Soojin Lim,et al.  NIR dyes for bioimaging applications. , 2010, Current opinion in chemical biology.

[36]  F. Ginhoux,et al.  Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis , 2009, Hepatology.

[37]  Roosmarijn E. Vandenbroucke,et al.  Biodegradable Dextran Nanogels for RNA Interference: Focusing on Endosomal Escape and Intracellular siRNA Delivery , 2009 .

[38]  Mauro Ferrari,et al.  Nanomedicine--challenge and perspectives. , 2009, Angewandte Chemie.

[39]  T Lammers,et al.  Tumour-targeted nanomedicines: principles and practice , 2008, British Journal of Cancer.

[40]  J. Rao,et al.  Fluorescence imaging in vivo: recent advances. , 2007, Current opinion in biotechnology.

[41]  R. Langer,et al.  Nanomedicine: developing smarter therapeutic and diagnostic modalities. , 2006, Advanced drug delivery reviews.

[42]  F. Levi-Schaffer,et al.  Activated mast cells are fibrogenic for 3T3 fibroblasts. , 1995, The Journal of investigative dermatology.