PREDATOR PERCEPTION OF BATESIAN MIMICRY AND CONSPICUOUSNESS IN A SALAMANDER

In Batesian mimicry a palatable mimic deceives predators by resembling an unpalatable model. The evolution of Batesian mimicry relies on the visual capabilities of the potential predators, as prey detection provides the selective force driving evolutionary change. We compared the visual capabilities of several potential predators to test predictions stemming from the hypothesis of Batesian mimicry between two salamanders: the model species Notophthalmus viridescens, and polymorphic mimic, Plethodon cinereus. First, we found mimicry to be restricted to coloration, but not brightness. Second, only bird predators appeared able to discriminate between the colors of models and nonmimic P. cinereus. Third, estimates of salamander conspicuousness were background dependent, corresponding to predictions only for backgrounds against which salamanders are most active. These results support the hypothesis that birds influence the evolution of Batesian mimicry in P. cinereus, as they are the only group examined capable of differentiating N. viridescens and nonmimetic P. cinereus. Additionally, patterns of conspicuousness suggest that selection from predators may drive the evolution of conspicuousness in this system. This study confirms the expectation that the visual abilities of predators may influence the evolution of Batesian mimicry, but the role of conspicuousness may be more complex than previously thought.

[1]  H. Pröhl,et al.  NOT EVERYTHING IS BLACK AND WHITE: COLOR AND BEHAVIORAL VARIATION REVEAL A CONTINUUM BETWEEN CRYPTIC AND APOSEMATIC STRATEGIES IN A POLYMORPHIC POISON FROG , 2013, Evolution; international journal of organic evolution.

[2]  W. M. Whitten,et al.  Convergent evolution of floral signals underlies the success of Neotropical orchids , 2013, Proceedings of the Royal Society B: Biological Sciences.

[3]  D. Adams,et al.  Morphological Color-Change in the Red-Backed Salamander (Plethodon cinereus) While Kept in Captivity , 2012, Copeia.

[4]  M. Stoddard Mimicry and masquerade from the avian visual perspective , 2012 .

[5]  M. Cummings,et al.  Poison Frog Colors Are Honest Signals of Toxicity, Particularly for Bird Predators , 2011, The American Naturalist.

[6]  H. Bates Contributions to an Insect Fauna of the Amazon Valley: Lepidoptera, Heliconidae , 2011 .

[7]  D. Pfennig,et al.  Predator Cognition Permits Imperfect Coral Snake Mimicry , 2010, The American Naturalist.

[8]  D. Pfennig,et al.  Mimics without models: causes and consequences of allopatry in Batesian mimicry complexes , 2010, Proceedings of the Royal Society B: Biological Sciences.

[9]  D. Adams,et al.  Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae) , 2010, BMC Evolutionary Biology.

[10]  G. Ruxton,et al.  Imperfect Batesian Mimicry and the Conspicuousness Costs of Mimetic Resemblance , 2010, The American Naturalist.

[11]  D. Adams,et al.  Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders , 2010, BMC Evolutionary Biology.

[12]  M. Cummings,et al.  Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog , 2009, Proceedings of the National Academy of Sciences.

[13]  K. Kunte,et al.  The Diversity and Evolution of Batesian Mimicry in Papilio Swallowtail Butterflies , 2009, Evolution; international journal of organic evolution.

[14]  D. Kemp,et al.  Conspicuousness of Dickerson's collared lizard (Crotaphytus dickersonae) through the eyes of conspecifics and predators , 2009 .

[15]  N. Justin Marshall,et al.  Mimicry in coral reef fish: how accurate is this deception in terms of color and luminance? , 2009 .

[16]  Dean C. Adams,et al.  A General Framework for the Analysis of Phenotypic Trajectories in Evolutionary Studies , 2009, Evolution; international journal of organic evolution.

[17]  D. Franks,et al.  WARNING SIGNALS EVOLVE TO DISENGAGE BATESIAN MIMICS , 2009, Evolution; international journal of organic evolution.

[18]  S. Trauth,et al.  A Complex Mimetic Relationship Between the Central Newt and Ozark Highlands Leech , 2008 .

[19]  D. Franks,et al.  Do unprofitable prey evolve traits that profitable prey find difficult to exploit? , 2005, Proceedings of the Royal Society B: Biological Sciences.

[20]  J. Endler,et al.  The complex business of survival by aposematism. , 2005, Trends in ecology & evolution.

[21]  Shawn R. Kuchta Experimental Support for Aposematic Coloration in the Salamander Ensatina eschscholtzii xanthoptica: Implications for Mimicry of Pacific Newts , 2005, Copeia.

[22]  W. Wüster,et al.  Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[23]  K. Summers,et al.  Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio , 2004, Journal of Experimental Biology.

[24]  D. Mebs,et al.  Occurrence of 11-oxotetrodotoxin in the red-spotted newt, Notophthalmus viridescens, and further studies on the levels of tetrodotoxin and its analogues in the newt's efts. , 2003, Toxicon : official journal of the International Society on Toxinology.

[25]  A. Sih,et al.  Temperature and ontogenetic effects on color change in the larval salamander species Ambystoma barbouri and Ambystoma texanum , 2003 .

[26]  William R. Harcombe,et al.  Frequency-dependent Batesian mimicry , 2001, Nature.

[27]  Randolf Menzel,et al.  Colour thresholds and receptor noise: behaviour and physiology compared , 2001, Vision Research.

[28]  Marti J. Anderson,et al.  A new method for non-parametric multivariate analysis of variance in ecology , 2001 .

[29]  T. Guilford,et al.  Aposematism: To be red or dead , 2000 .

[30]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[31]  I. Cuthill,et al.  Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.) , 2000, Journal of Comparative Physiology A.

[32]  Christopher P. Grill,et al.  Analysing spectral data: comparison and application of two techniques , 2000 .

[33]  M. Speed,et al.  Batesian, quasi-Batesian or Müllerian mimicry? Theory and data in mimicry Research , 1999, Evolutionary Ecology.

[34]  James Mallet,et al.  EVOLUTION OF DIVERSITY IN WARNING COLOR AND MIMICRY: Polymorphisms, Shifting , 1999 .

[35]  I. Cuthill,et al.  Tetrachromacy, oil droplets and bird plumage colours , 1998, Journal of Comparative Physiology A.

[36]  J. Petranka,et al.  Salamanders of the United States and Canada , 1998 .

[37]  P. Röhlich,et al.  The photoreceptors and visual pigments of the garter snake (Thamnophis sirtalis): a microspectrophotometric, scanning electron microscopic and immunocytochemical study , 1997, Journal of Comparative Physiology A.

[38]  J. Endler,et al.  Interacting Effects of Lek Placement, Display Behavior, Ambient Light, and Color Patterns in Three Neotropical Forest-Dwelling Birds , 1996, The American Naturalist.

[39]  J. Endler The Color of Light in Forests and Its Implications , 1993 .

[40]  E. Brodie DIFFERENTIAL AVOIDANCE OF CORAL SNAKE BANDED PATTERNS BY FREE‐RANGING AVIAN PREDATORS IN COSTA RICA , 1993, Evolution; international journal of organic evolution.

[41]  J. Endler On the measurement and classification of colour in studies of animal colour patterns , 1990 .

[42]  T. J. Roper,et al.  Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning , 1987, Animal Behaviour.

[43]  T. Goldsmith,et al.  Four spectral classes of cone in the retinas of birds , 1986, Journal of Comparative Physiology A.

[44]  G. H. Jacobs,et al.  Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry , 1985, Journal of Comparative Physiology A.

[45]  S. J. Arnold A Quantitative Approach to Antipredator Performance: Salamander Defense against Snake Attack , 1982 .

[46]  H. Greene,et al.  Coral Snake Mimicry: Does It Occur? , 1981, Science.

[47]  E. Brodie,et al.  Differential Avoidance of Mimetic Salamanders by Free-Ranging Birds , 1980, Science.

[48]  E. Brodie,et al.  The Effectiveness of Antipredator Secretions and Behavior of Selected Salamanders Against Shrews , 1979 .

[49]  N. Scott,et al.  Correlation between climate and distribution of the color morphs of the salamander Plethodon cinereus , 1977 .

[50]  E. Brodie,et al.  Experimental Study of Mimicry in Salamanders involving Notophthalmus viridescens viridescens and Pseudotriton ruber schencki , 1971, Nature.

[51]  S. Hurlbert Predator Responses to the Vermilion-Spotted Newt (Notophthalmus viridescens) , 1970 .

[52]  M. Edmunds Polymorphism in the mimetic butterfly Hypolimnas misippus L in Ghana , 1969, Heredity.

[53]  E. Brodie Investigations on the Skin Toxin of the Red-Spotted Newt, Notophthalmus viridescens viridescens , 1968 .

[54]  D. B. Judd,et al.  Spectral Distribution of Typical Daylight as a Function of Correlated Color Temperature , 1964 .

[55]  C. M. Coker Hermit Thrush Feeding on Salamanders , 1931 .

[56]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[57]  MARTI J. ANDERSONa,et al.  PERMUTATION TESTS FOR MULTIFACTORIAL ANALYSIS OF VARIANCE , 2008 .

[58]  G. Ruxton,et al.  Avoiding Attack: The Evolutionary Ecology of Crypsis, Warning Signals and Mimicry , 2004 .

[59]  John D. Taylor,et al.  Differences in pigment-containing organelles between color forms of the red-backed salamander, Plethodon cinereus , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[60]  Linda A. Weir,et al.  Plethodon cinereus (Redback Salamander) predation , 2000 .

[61]  L. Trueb,et al.  Biology of Amphibians , 1986 .