Non-stationary quantum walks on the cycle

We consider quantum walks on the cycle in the non-stationary case where the 'coin' operation is allowed to change at each time step. We characterize, in algebraic terms, the set of possible state transfers and prove that, as opposed to the stationary case, the associate probability distribution may converge to a uniform distribution among the nodes of the associated graph.

[1]  Ofer Biham,et al.  One-dimensional quantum walk with unitary noise , 2003 .

[2]  Domenico D'Alessandro,et al.  Notions of controllability for bilinear multilevel quantum systems , 2003, IEEE Trans. Autom. Control..

[3]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[4]  H. Sussmann,et al.  Control systems on Lie groups , 1972 .

[5]  Norio Konno,et al.  A Path Integral Approach for Disordered Quantum Walks in One Dimension , 2004 .

[6]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[7]  Tomasz Luczak,et al.  EXAMPLES OF NON-UNIFORM LIMITING DISTRIBUTIONS FOR THE QUANTUM WALK ON EVEN CYCLES , 2004 .

[8]  Andris Ambainis,et al.  Quantum walks on graphs , 2000, STOC '01.

[9]  Tomasz Luczak,et al.  Quantum walks on cycles , 2003 .

[10]  Will Flanagan,et al.  Controlling discrete quantum walks: coins and initial states , 2003 .

[11]  Vivien M. Kendon,et al.  Decoherence in quantum walks – a review , 2006, Mathematical Structures in Computer Science.

[12]  P. Ribeiro,et al.  Aperiodic quantum random walks. , 2004, Physical review letters.

[13]  D. Neuenschwander Probabilities on the Heisenberg Group , 1996 .

[14]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .

[15]  R. Schott,et al.  Dynamic Random Walks on Heisenberg Groups , 2006 .

[16]  Julia Kempe,et al.  Quantum random walks: An introductory overview , 2003, quant-ph/0303081.

[17]  R. Walde,et al.  Introduction to Lie groups and Lie algebras , 1973 .