An FPGA based Accelerator for Ubiquitous Clustering Applications with Custom Instructions

[1]  James C. Hoe,et al.  GraphGen: An FPGA Framework for Vertex-Centric Graph Computation , 2014, 2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines.

[2]  Paul Chow,et al.  K-means implementation on FPGA for high-dimensional data using triangle inequality , 2012, 22nd International Conference on Field Programmable Logic and Applications (FPL).

[3]  Jia Wang,et al.  DaDianNao: A Machine-Learning Supercomputer , 2014, 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture.

[4]  Margaret Martonosi,et al.  Graphicionado: A high-performance and energy-efficient accelerator for graph analytics , 2016, 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[5]  David Blaauw,et al.  GenAx: A Genome Sequencing Accelerator , 2018, 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA).

[6]  Chao Wang,et al.  MALOC: A Fully Pipelined FPGA Accelerator for Convolutional Neural Networks With All Layers Mapped on Chip , 2018, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[7]  Gustavo Alonso,et al.  BiS-KM: Enabling Any-Precision K-Means on FPGAs , 2020, FPGA.

[8]  Dong Han,et al.  Cambricon: An Instruction Set Architecture for Neural Networks , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[9]  Tianshi Chen,et al.  ShiDianNao: Shifting vision processing closer to the sensor , 2015, 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA).

[10]  George A. Constantinides,et al.  FPGA-based K-means clustering using tree-based data structures , 2013, 2013 23rd International Conference on Field programmable Logic and Applications.

[11]  Tarek S. Abdelrahman Accelerating K-means clustering on a tightly-coupled processor-FPGA heterogeneous system , 2016, 2016 IEEE 27th International Conference on Application-specific Systems, Architectures and Processors (ASAP).

[12]  Horácio C. Neto,et al.  Multi-core for K-means clustering on FPGA , 2016, 2016 26th International Conference on Field Programmable Logic and Applications (FPL).

[13]  Giovanni Comarela,et al.  A GPU/FPGA-Based K-Means Clustering Using a Parameterized Code Generator , 2018, 2018 Symposium on High Performance Computing Systems (WSCAD).

[14]  Darshika G. Perera,et al.  A fast and scalable FPGA-based parallel processing architecture for K-means clustering for big data analysis , 2017, 2017 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing (PACRIM).

[15]  Jason Cong,et al.  Caffeine: Toward Uniformed Representation and Acceleration for Deep Convolutional Neural Networks , 2019, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[16]  Shaoli Liu,et al.  Cambricon-X: An accelerator for sparse neural networks , 2016, 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[17]  Michael Eisenstein,et al.  Big data: The power of petabytes , 2015, Nature.

[18]  Xuehai Zhou,et al.  PuDianNao: A Polyvalent Machine Learning Accelerator , 2015, ASPLOS.

[19]  Qi Yu,et al.  DLAU: A Scalable Deep Learning Accelerator Unit on FPGA , 2016, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[20]  Zhimin Zhang,et al.  Alleviating Irregularity in Graph Analytics Acceleration: a Hardware/Software Co-Design Approach , 2019, MICRO.

[21]  Viktor K. Prasanna,et al.  FASTCF: FPGA-based Accelerator for STochastic-Gradient-Descent-based Collaborative Filtering , 2018, FPGA.

[22]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[23]  Ninghui Sun,et al.  DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning , 2014, ASPLOS.