An integral equation technique for the exterior and interior Neumann problem in toroidal regions

[1]  S. Hirshman,et al.  MOMCON: A spectral code for obtaining three-dimensional magnetohydrodynamic equilibria , 1986 .

[2]  A. Mirin,et al.  Design of heliac vacuum magnetic fields , 1985 .

[3]  P. Garabedian,et al.  Magnetohydrodynamic Equilibrium and Stability of Stellarators , 1984 .

[4]  J. Cary,et al.  Elimination of stochasticity in stellarators , 1984, Hamiltonian Dynamical Systems.

[5]  U. Schwenn Fourier versus difference methods in computing three-dimensional MHD equilibria , 1984 .

[6]  A. Shestakov,et al.  Application of the implicit Fourier-expansion method to the calculation of three-dimensional equilibria by the iterative method☆ , 1984 .

[7]  P. Merkel A Green’s Function Method for the Vacuum Contribution to the MHD Stability of Helically Symmetric Equilibria , 1982 .

[8]  P. Merkel,et al.  Hera and other extensions of Erato , 1981 .

[9]  W. Dommaschk Solution to Stellarator Boundary Value Problems with Set of Simple Toroidal Harmonic Functions , 1981 .

[10]  L. Delves,et al.  Numerical solution of integral equations , 1975 .

[11]  J. Hess Review of integral-equation techniques for solving potential-flow problems with emphasis on the surface-source method , 1975 .

[12]  E. Brigham,et al.  The fast Fourier transform , 1967, IEEE Spectrum.

[13]  Erich Martensen,et al.  Über eine Methode zum räumlichen Neumannschen Problem mit einer Anwendung für torusartige Berandungen , 1963 .

[14]  W. Schneider,et al.  Erato Stability Code , 1984 .

[15]  W. Dommaschk Finite Field Harmonics for Stellarators with Improved Aspect Ratio , 1982 .

[16]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[17]  M. A. Jaswon,et al.  Integral equation methods in potential theory and elastostatics , 1977 .