ISOLATION OF HUMAN BONE MARROW MESENCHYMAL STEM CELLS AND EVALUATION OF THEIR OSTEOGENIC POTENTIAL

Human bone marrow mesenchymal stem cells (hBMSCs) comprise a cell population capable of self-renewal and multilineage differentiation commonly isolated from bone marrow aspirates of large bones. Their osteogenic potential has been extensively exploited for the biological evaluation of scaffolds or biomaterials with applications in bone tissue engineering. This work aimed to isolate hBMSCs from femoral heads of patients undergoing total hip arthroplasty and to evaluate their osteogenic potential. Briefly, the trabecular bone was extracted and mechanically disaggregated; the released cells were cultured and non-adherent cells were removed after 4 days. The osteogenic potential was evaluated at the fifth passage after 14 and 20 days of induction, comparing cultures with and without osteogenic supplements, via Alizarin red staining and the quantification of the gene expression levels of the osteogenic markers collagen type I, osteonectin and bone sialoprotein through real-time RT-PCR. The obtained hBMSCs presented a stable undifferentiated phenotype after prolonged cell culture, matrix mineralization capabilities and expression of osteoblast phenotype upon osteogenic induction. The three markers were up-regulated in cultures under osteogenic conditions and 2 fold differences in their expression levels were found to be significant for the onset of the differentiation process. The obtained hBMSCs may have applications on the in vitro evaluation of the osteoinductivity of different biomaterials, bioactive molecules or tissue engineering scaffolds. Resumen— Las celulas madre mesenquimatosas de medula osea humana (abreviadas hBMSCs) constituyen una fuente de celulas auto-renovables con alto potencial de diferenciacion, comunmente aisladas a partir de los aspirados medulares en huesos largos. Su diferenciacion hacia el linaje osteogenico, por ejemplo, ha sido ampliamente utilizada para la evaluacion biologica de biomateriales o matrices con aplicaciones en la ingenieria de tejidos oseos. El objetivo de este trabajo consistio en aislar hBMSCs a partir de la cabeza femoral de pacientes sometidos a artroplastia total de cadera, asi como evaluar su potencial osteogenico. Brevemente, se extrajo el hueso esponjoso y se disgrego mecanicamente; las celulas desprendidas se cultivaron y las celulas no adherentes se eliminaron luego de 4 dias. El potencial osteogenico se evaluo en la quinta generacion de cultivo, mediante ensayos de diferenciacion a 14 y 20 dias donde se compararon cultivos con y sin suplementos osteogenicos. La evaluacion se realizo mediante tincion con Alizarina Roja y la cuantificacion de los niveles de expresion genica de los marcadores osteogenicos colageno tipo I, osteonectinca y sialoprotiena osea mediante RT-PCR en tiempo real. Las hBMSCs obtenidas presentaron un fenotipo no-diferenciado estable, asi como la capacidad de mineralizar la matriz extracelular y expresar un fenotipo similar al osteoblasto durante la induccion osteogenica. Los tres marcadores evaluados se sobre-expresaron en los cultivos en condiciones osteogenicas, y se encontro que cambios hasta de 2X en sus niveles de expresion son relevantes para el desarrollo del proceso de diferenciacion. El modelo de hBMSCS presentado podria ser utilizado para la evaluacion in vitro de la osteoinductividad de diferentes biomateriales, moleculas bioactivas o matrices para ingenieria de tejidos.

[1]  I. Sekiya,et al.  Expansion of Human Adult Stem Cells from Bone Marrow Stroma: Conditions that Maximize the Yields of Early Progenitors and Evaluate Their Quality , 2002, Stem cells.

[2]  L. Hench,et al.  Type I collagen production by osteoblast-like cells cultured in contact with different bioactive glasses. , 2003, Journal of biomedical materials research. Part A.

[3]  Benjamin M. Wu,et al.  Human mesenchymal stem cell proliferation and osteogenic differentiation in fibrin gels in vitro. , 2006, Tissue engineering.

[4]  A. Goldstein,et al.  Fluid flow stimulates expression of osteopontin and bone sialoprotein by bone marrow stromal cells in a temporally dependent manner. , 2005, Bone.

[5]  Hyunjin Cho,et al.  Induction of osteogenic differentiation of human mesenchymal stem cells by histone deacetylase inhibitors , 2005, Journal of cellular biochemistry.

[6]  G. Mortier,et al.  qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data , 2007, Genome Biology.

[7]  A. Moorman,et al.  Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data , 2003, Neuroscience Letters.

[8]  W. Grayson,et al.  Human Mesenchymal Stem Cells Tissue Development in 3D PET Matrices , 2004, Biotechnology progress.

[9]  Z. Trajanoski,et al.  Gene expression profiling of human mesenchymal stem cells derived from bone marrow during expansion and osteoblast differentiation , 2007, BMC Genomics.

[10]  G. Vunjak‐Novakovic,et al.  Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. , 2004, Journal of biomedical materials research. Part A.

[11]  Kenichi Yoshida,et al.  Tumour necrosis factor alpha-stimulated gene-6 inhibits osteoblastic differentiation of human mesenchymal stem cells induced by osteogenic differentiation medium and BMP-2. , 2006, The Biochemical journal.

[12]  R. Tuan,et al.  Multilineage mesenchymal differentiation potential of human trabecular bone‐derived cells , 2002, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[13]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[14]  Hung Li,et al.  Isolation and Characterization of Size‐Sieved Stem Cells from Human Bone Marrow , 2002, Stem cells.

[15]  E. Caterson,et al.  Human marrow-derived mesenchymal progenitor cells , 2002, Molecular biotechnology.

[16]  Elizabeth G Loboa,et al.  Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. , 2006, Tissue engineering.

[17]  Moustapha Kassem,et al.  Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. , 2007, Biomaterials.

[18]  Aldo R. Boccaccini,et al.  In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. , 2004, Tissue engineering.

[19]  Ung-Jin Kim,et al.  Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. , 2005, Biomaterials.

[20]  David L Kaplan,et al.  Osteogenesis by human mesenchymal stem cells cultured on silk biomaterials: comparison of adenovirus mediated gene transfer and protein delivery of BMP-2. , 2006, Biomaterials.

[21]  Gordana Vunjak-Novakovic,et al.  Bone Tissue Engineering Using Human Mesenchymal Stem Cells: Effects of Scaffold Material and Medium Flow , 2004, Annals of Biomedical Engineering.

[22]  A. Barbero,et al.  Real‐time quantitative RT‐PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro , 2002, Journal of cellular biochemistry.

[23]  Antonio Nanci,et al.  Nanotexturing of titanium-based surfaces upregulates expression of bone sialoprotein and osteopontin by cultured osteogenic cells. , 2004, Biomaterials.

[24]  M. Zago,et al.  The Profile of Gene Expression of Human Marrow Mesenchymal Stem Cells , 2003, Stem cells.

[25]  F. Jakob,et al.  Differential expression of CCN-family members in primary human bone marrow-derived mesenchymal stem cells during osteogenic, chondrogenic and adipogenic differentiation , 2005, Cell Communication and Signaling.

[26]  M. Long,et al.  Osteogenic differentiation of human mesenchymal stem cells is regulated by bone morphogenetic protein‐6 , 2006, Journal of cellular biochemistry.

[27]  S. Kleiboeker Quantitative assessment of the effect of uracil-DNA glycosylase on amplicon DNA degradation and RNA amplification in reverse transcription-PCR , 2005, Virology Journal.

[28]  坂口 祐輔 Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates , 2005 .

[29]  D J Prockop,et al.  Identification of a subpopulation of rapidly self-renewing and multipotential adult stem cells in colonies of human marrow stromal cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.