Zeros of quasi-paraorthogonal polynomials and positive quadrature

In this paper we illustrate that paraorthogonality on the unit circle T is the counterpart to orthogonality on R when we are interested in the spectral properties. We characterize quasiparaorthogonal polynomials on the unit circle as the analogues of the quasi-orthogonal polynomials on R. We analyze the possibilities of preselecting some of its zeros, in order to build positive quadrature formulas with prefixed nodes and maximal domain of validity. These quadrature formulas on the unit circle are illustrated numerically.

[1]  On quasi-orthogonal polynomials , 1961 .

[2]  A. Álvarez,et al.  On the trigonometric moment problem , 2011, Ergodic Theory and Dynamical Systems.

[3]  N. Akhiezer,et al.  The Classical Moment Problem and Some Related Questions in Analysis , 2020 .

[4]  Adhemar Bultheel,et al.  A connection between quadrature formulas on the unit circle and the interval [ - 1,1] , 2001 .

[5]  Rank one perturbations and the zeros of paraorthogonal polynomials on the unit circle , 2006, math/0606037.

[6]  Adhemar Bultheel,et al.  Quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity , 2009, J. Comput. Appl. Math..

[7]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes, II , 1958 .

[8]  Pablo González-Vera,et al.  Quadrature formulas associated with Rogers-Szego polynomials , 2009, Comput. Math. Appl..

[9]  P. Revesz Interpolation and Approximation , 2010 .

[10]  A. Cohn,et al.  Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .

[11]  Orthogonal Polynomials on the Unit Circle , 2020, Encyclopedia of Special Functions: The Askey-Bateman Project.

[12]  Lothar Reichel,et al.  Szegő-Lobatto quadrature rules , 2007 .

[13]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[14]  P. Vaidyanathan,et al.  A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.

[15]  J. Schur,et al.  Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. , 1917 .

[16]  C. D. Mendoza,et al.  Szegő-type quadrature formulas , 2017 .

[17]  W. J. Thron,et al.  Moment Theory, Orthogonal Polynomials, Quadrature, and Continued Fractions Associated with the unit Circle , 1989 .

[18]  Francisco Marcellán,et al.  Zeros of para–orthogonal polynomials and linear spectral transformations on the unit circle , 2015, Numerical Algorithms.

[19]  H. Joulak A contribution to quasi-orthogonal polynomials and associated polynomials , 2005 .

[20]  G. Monegato On polynomials orthogonal with respect to particular variable-signed weight functions , 1980 .

[21]  A. Bultheel,et al.  Computation of rational Szegő-Lobatto quadrature formulas , 2009 .

[22]  J. A. Ball,et al.  I. Schur methods in operator theory and signal processing , 1987 .

[23]  Y. Genin,et al.  Tridiagonal approach to the algebraic environment of Toeplitz matrices, part I: basic results , 1991 .

[24]  P. Dewilde,et al.  Lossless chain scattering matrices and optimum linear prediction: The vector case , 1981 .

[25]  O. Njstad,et al.  Domain of validity of Szegö quadrature formulas , 2007 .

[26]  M. Barel,et al.  On Gauss-type quadrature formulas with prescribed nodes anywhere on the real line , 2008 .

[27]  Manwah Lilian Wong First and second kind paraorthogonal polynomials and their zeros , 2007, J. Approx. Theory.

[28]  Franz Peherstorfer,et al.  Positive trigonometric quadrature formulas and quadrature on the unit circle , 2010, Math. Comput..

[29]  Carlos Díaz-Mendoza,et al.  A connection between Szegő-Lobatto and quasi Gauss-type quadrature formulas , 2015, J. Comput. Appl. Math..

[30]  L. Moral,et al.  Measures and para orthogonal polynomials on the unit circle , 2002 .

[31]  Robert C. Rhoades,et al.  Boundary Interpolation by Finite Blaschke Products , 2008 .

[32]  J. Geronimus On the Trigonometric Moment Problem , 1946 .

[33]  R. Cooke Real and Complex Analysis , 2011 .

[34]  M. J. Cantero,et al.  A matrix approach to the computation of quadrature formulas on the unit circle , 2006 .

[35]  Y. Genin,et al.  On the Role of Orthogonal Polynomials on the Unit Circle in Digital Signal Processing Applications , 1990 .

[36]  B. Simon,et al.  Poncelet's theorem, paraorthogonal polynomials and the numerical range of compressed multiplication operators , 2018, Advances in Mathematics.

[37]  A. Draux On quasi-orthogonal polynomials , 1990 .

[38]  J. Shohat On mechanical quadratures, in particular, with positive coefficients , 1937 .

[39]  T. Chihara,et al.  On quasi-orthogonal polynomials , 1957 .

[40]  Adhemar Bultheel,et al.  Matrix methods for quadrature formulas on the unit circle. A survey , 2015, J. Comput. Appl. Math..

[41]  Leandro Moral,et al.  Measures on the unit circle and unitary truncations of unitary operators , 2006, J. Approx. Theory.

[42]  B. Beckermann,et al.  Gaussian, Lobatto and Radau positive quadrature rules with a prescribed abscissa , 2014 .

[43]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[44]  Y. Genin,et al.  Tridiagonal approach to the algebraic environment of Toeplitz matrices, part II.: zero and eigenvalue problems , 1991 .

[45]  Quadrature formula and zeros of para-orthogonal polynomials on the unit circle , 2002 .

[46]  K. Castillo,et al.  On a spectral theorem in paraorthogonality theory , 2016 .

[47]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[48]  Yuval Bistritz,et al.  A circular stability test for general polynomials , 1986 .

[49]  L. Fejér,et al.  Mechanische Quadraturen mit positiven Cotesschen Zahlen , 1933 .