A physically-based method for removing pits in digital elevation models

[1]  Richard J. Pike,et al.  The geometric signature: Quantifying landslide-terrain types from digital elevation models , 1988 .

[2]  S. K. Jenson,et al.  Extracting topographic structure from digital elevation data for geographic information-system analysis , 1988 .

[3]  L. Martz,et al.  CATCH: a FORTRAN program for measuring catchment area from digital elevation models , 1988 .

[4]  I. Rodríguez‐Iturbe,et al.  A coupled channel network growth and hillslope evolution model: 2. Nondimensionalization and applications , 1991 .

[5]  I. Rodríguez‐Iturbe,et al.  A coupled channel network growth and hillslope evolution model: 1. Theory , 1991 .

[6]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[7]  David G. Tarboton,et al.  On the extraction of channel networks from digital elevation data , 1991 .

[8]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .

[9]  Charles Ichoku,et al.  A combined algorithm for automated drainage network extraction , 1992 .

[10]  William E. Dietrich,et al.  Modeling fluvial erosion on regional to continental scales , 1994 .

[11]  Rafael L. Bras,et al.  The Effect of Spatial Heterogeneities on Geomorphic Expression in a Model of Basin Evolution , 1995 .

[12]  Wolfgang Förstner,et al.  Towards automatic building extraction from high-resolution digital elevation models , 1995 .

[13]  William E. Dietrich,et al.  Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments , 1997 .

[14]  Gregory E. Tucker,et al.  Hillslope processes, drainage density, and landscape morphology , 1998 .

[15]  L. Martz,et al.  The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models , 1998 .

[16]  W. Rieger A phenomenon‐based approach to upslope contributing area and depressions in DEMs , 1998 .

[17]  P. Burrough,et al.  Principles of geographical information systems , 1998 .

[18]  L. Martz,et al.  An outlet breaching algorithm for the treatment of closed depressions in a raster DEM , 1999 .

[19]  G. Tucker,et al.  Dynamics of the stream‐power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs , 1999 .

[20]  Francisco Olivera,et al.  Global‐scale flow routing using a source‐to‐sink algorithm , 2000 .

[21]  T. Farr,et al.  Shuttle radar topography mission produces a wealth of data , 2000 .

[22]  Nicole M. Gasparini,et al.  The Channel-Hillslope Integrated Landscape Development Model (CHILD) , 2001 .

[23]  Marian Werner,et al.  Shuttle Radar Topography Mission (SRTM) Mission Overview , 2001 .

[24]  William W. Doe,et al.  Landscape erosion and evolution modeling , 2001 .

[25]  Frédéric Darboux,et al.  A fast, simple and versatile algorithm to fill the depressions of digital elevation models , 2002 .

[26]  Michael J. Oimoen,et al.  The National Elevation Dataset , 2002 .

[27]  R. Bras,et al.  A physically based interpolation method for fluvially eroded topography , 2003 .

[28]  R. MacMillan,et al.  Automated analysis and classification of landforms using high-resolution digital elevation data: applications and issues , 2003 .

[29]  R. Colombo,et al.  Carving and adaptive drainage enforcement of grid digital elevation models , 2003 .

[30]  K. Takeuchi,et al.  Development and application of a new algorithm for automated pit removal for grid DEMs , 2003 .

[31]  R. Bras,et al.  Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography , 2004 .

[32]  Salvatore Grimaldi,et al.  Sensitivity of a physically based method for terrain interpolation to initial conditions and its conditioning on stream location , 2004 .

[33]  T. Chou,et al.  Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM , 2004 .

[34]  P. Soille Optimal removal of spurious pits in grid digital elevation models , 2004 .

[35]  F. Catani,et al.  On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements , 2005 .

[36]  J. Melack,et al.  Understanding and modeling basin hydrology: interpreting the hydrogeological signature , 2005 .

[37]  J. Lindsay,et al.  Sensitivity of digital landscapes to artifact depressions in remotely-sensed DEMs , 2005 .

[38]  Salvatore Grimaldi,et al.  Preserving first and second moments of the slope area relationship during the interpolation of digital elevation models , 2005 .

[39]  J. Lindsay,et al.  Removal of artifact depressions from digital elevation models: towards a minimum impact approach , 2005 .

[40]  M. Yokohari,et al.  Identification of potential habitats of gray-faced buzzard in Yatsu landscapes by using digital elevation model and digitized vegetation data , 2005 .

[41]  L. Wang,et al.  An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling , 2006, Int. J. Geogr. Inf. Sci..

[42]  M. Hutchinson,et al.  Digital terrain analysis. , 2008 .