Travelling waves in lattice dynamical systems

For a class of one-dimensional lattice dynamical systems we prove the existence of periodic travelling waves with prescribed speed and arbitrary period. Then we study asymptotic behaviour of such waves for big values of period and show that they converge, in an appropriate topology, to a solitary travelling wave.

[1]  Robert L. Pego,et al.  Solitary waves on FPU lattices: II. Linear implies nonlinear stability , 2002 .

[2]  A. Pankov,et al.  On Ground-Traveling Waves for the Generalized Kadomtsev-Petviashvili Equations , 2000 .

[3]  Robert L. Pego,et al.  Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit , 1999 .

[4]  Periodic and solitary traveling wave solutions for the generalized Kadomtsev-Petviashvili equation , 1999 .

[5]  A. Pankov,et al.  On a semilinear Schro¨dinger equation with periodic potential , 1998 .

[6]  G. Arioli,et al.  Periodic motions of an infinite lattice of particles : The strongly indefinite case , 1998 .

[7]  Michel Willem,et al.  Solitary waves with prescribed speed on infinite lattices , 1997 .

[8]  G. Arioli,et al.  Periodic motions of a dynamical system consisting of an infinite lattice of particles , 1997 .

[9]  Multibump periodic motions of an infinite lattice of particles , 1996 .

[10]  Gianni Arioli,et al.  Periodic motions of an infinite lattice of particles with nearest neighbor interaction , 1996 .

[11]  Henri Berestycki,et al.  Variational methods for indefinite superlinear homogeneous elliptic problems , 1995 .

[12]  Gianni Arioli,et al.  Existence and numerical approximation of periodic motions of an infinite lattice of particles , 1995 .

[13]  Bernhard Ruf,et al.  On periodic motions of lattices of Toda type via critical point theory , 1994 .

[14]  Gero Friesecke,et al.  Existence theorem for solitary waves on lattices , 1994 .

[15]  D. Duncan,et al.  Approximations of solitary waves on lattices using weak and variational formulations , 1992 .

[16]  J. C. Eilbeck Numerical studies of solitons on lattices , 1991 .

[17]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[18]  P. Lions The concentration-compactness principle in the calculus of variations. The locally compact case, part 1 , 1984 .

[19]  P. Lions The concentration-compactness principle in the Calculus of Variations , 1984 .

[20]  Morikazu Toda,et al.  Theory Of Nonlinear Lattices , 1981 .

[21]  T. Valkering Periodic permanent waves in an anharmonic chain with nearest-neighbour interaction , 1978 .

[22]  S. Ulam,et al.  Studies of nonlinear problems i , 1955 .